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On the Morse and the Maslov index for
periodic geodesics of arbitrary causal
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Abstract. We prove a version of the Morse Index Theorem for periodic geode-
sics in a stationary Lorentzian manifold. This theorem relates the index of a
suitable restriction of the second variation of the Lorentzian action functional
to the Maslov index of a periodic geodesic. The Maslov index of a periodic
geodesic is a semi-integer defined in terms of the flow of the Jacobi equation
along the geodesic, which produces a curve in the symplectic group.
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1. Introduction

The classical Morse index theorem in Riemannian geometry for geodesics be-
tween two fixed points (see for instance [4]) gives an equality between the Morse
index of the action functionalf (γ ) = 1

2

∫ b
a g(γ ′, γ ′) at a critical pointγ , which

is a geodesic, and the number of conjugate points alongγ . Recall that the Morse
index of f is the index of the second variation off (called theindex form), which
is a symmetric bilinear form defined on the space of vector fields alongγ vanishing
at the endpoints.

The theorem generalizes to the case of periodic geodesics, where the Morse
index of the action functional is given by the index of the index form defined on the
space of vector fieldsV alongγ with V(a) = V(b); the theorem gives an equality
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between the Morse index off atγ and the sum of the number of conjugate points
alongγ with a term called by Morse theorder of concavityof γ (see [10]).

When passing to the case of Lorentzian manifolds, i.e., manifolds endowed with
a metric tensor of index 1, it is well known that the Morse index theorem for
geodesics between fixed points generalizes in the case ofnonspacelikegeodesics
(see [1,2]), and for this generalization one has to consider the index of the restric-
tion of the index form to the space of vector fields which are everywhere orthogonal
to γ . In [8] the authors prove a general formulation of the Lorentzian Morse index
theorem in the case of stationary Lorentzian manifolds for geodesics of any causal
character. For this generalization, one needs to consider the index of the restriction
of the index form to the space of vector fields alongγ satisfying a suitable con-
servation law with respect to a fixed timelike Killing vector field. Moreover, the
number of conjugate points along the geodesic (that can be infinite in the space-
like case) is replaced by an integer called theMaslov indexof the geodesic, which
roughly speaking gives an algebraic count of the conjugate points alongγ . More
precisely, the Maslov index of a geodesic is defined as an intersection number of
a curve in the Lagrangian Grassmannian� of a symplectic space with theMaslov
cycleof � (see for instance [12] for details). We remark that an even deeper gener-
alization of the Morse Index Theorem for general semi-Riemannian manifolds can
be found in [14,15].

In this paper, following the ideas of [8], we prove a Lorentzian version of the
Morse index theorem for periodic geodesics of any causal character in the case of
stationary manifolds. In analogy with [8], given a timelike Killing vector fieldY,
we consider the restriction of the action functional to the spaceN of closed curves
η satisfying the conservation lawg(η′, Y) ≡ cη (constant). The critical points of
the action functionalf in N are precisely the periodic geodesics (Theorem 4.1).
Moreover, given a periodic geodesicγ , the Morse index of the restriction of the
action functional toN atγ is finite.

Using a periodic trivialization of the tangent bundle alongγ , the flow of the Ja-
cobi equation alongγ produces a smooth curve in the symplectic group Sp(2n, R)

starting at the identity. Using an embedding of Sp(2n, R) into the Lagrangian
Grassmannian of a 4n-dimensional symplectic space we define a notion of Maslov
index for curves� in Sp(2n, R). This notion of Maslov index gives a sort of alge-
braic count of the instantst when�(t) is a symplectomorphism having one of its
eigenvalues equal to 1; in the geodesic case, these instants play the role of “conju-
gate points” along a periodic geodesic. For instance, the dimension of the kernel of
the index form (defined as thenullity of the geodesic) equals the geometric multi-
plicity of the eigenvalue 1 of�(b).

Observe that each periodic geodesicγ is a degenerate critical point off ; namely,
γ̇γ andY ◦ γ are always in the kernel of the index form. There are several notions
of Maslov index in the literature; in order to deal with degenerate geodesics, the
appropriate notion is the one given in [17] for arbitrary curves in the symplectic
group. Given a continuous curve� in the symplectic group Sp(2n, R), the Maslov
index iMaslov(�) is an intersection number of� with the variety	0 consisting of
symplectomorphisms having eigenvalue 1. When� is obtained from the flow of
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the Jacobi equation along a geodesicγ , the degeneracy ofγ corresponds to the fact
that the final endpoint of� is in 	0, in which case a suitable correction term (a
semi-integer number) is added in the computation of iMaslov(�).

The main theorem of the paper gives a relation between the Maslov index and
the Morse index of a periodic geodesic in a stationary Lorentzian manifold. It
should be observed that a different formulation of the periodic index theorem in
the Lorentzian case could be given in terms of the order of concavity of the geo-
desic. However, the authors believe the formulation involving the Maslov index of
symplectic paths is more interesting, due to the fact that it allows the development
of iteration formulas, in the spirit of [3,7].

For a better understanding of the material presented we give a short overview of
the contents of each section.

In Section 2 we recall some basic properties of the geometry of the symplectic
group and the Lagrangian Grassmannian� of a symplectic space, and we recall
the definition of the Maslov index for curves in�. We also give the definition of
Maslov index for curves in the symplectic group; the main results of the section are
Lemma 2.10 and its Corollary 2.11, where we establish a relation between the two
notions of Maslov index.

In Section 3 we describe how to associate to a periodic geodesic a curve in
the symplectic group; we use a Hamiltonian formalism which is well suited in the
context of symplectic geometry.

Finally, in Section 4 we state and prove our main theorem; its proof uses the
index theorem of [8] and the technical Lemma 2.10 with its Corollary 2.11.

2. The Maslov index of curves in the Lagrangian Grassmannian and in
the symplectic group

In this section we will recall some basic facts concerning the geometry of the La-
grangian Grassmannian and of the symplectic group of a symplectic space; proofs
of such facts can be found for instance in [5,6,12,17].

Let (V, ω) be a symplectic vector space, i.e., V is a real vector space with
dim(V) = 2n andω : V × V → R is an anti-symmetric nondegenerate bilinear
form; a linear operatorT : V → V is called asymplectomorphismif it preserves
ω. Thesymplectic groupSp(V, ω) of (V, ω) is the Lie group of all symplectomor-
phisms of(V, ω).

We define

	+ = {
T ∈ Sp(V, ω) : det(T − Id) > 0

}
,

	− = {
T ∈ Sp(V, ω) : det(T − Id) < 0

}
and

	0 = {
T ∈ Sp(V, ω) : det(T − Id) = 0

};
we also set	± = 	+ ∪ 	−.

We have that	+ and	− are open arc-connected subsets of Sp(V, ω).
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A subspaceL ⊂ V is said to be aLagrangian subspaceif

ω|L = 0 and dim(L) = n.

We denote by�(V, ω), or more simply by�, the set of all Lagrangian subspaces
of (V, ω):

�(V, ω) = � = {
L ⊂ V : L is a Lagrangian subspace of(V, ω)

}
.

The set� is called theLagrangian Grassmannianof the symplectic space(V, ω)

and it is a compact, connected real-analytic1
2n(n + 1)-dimensional embedded sub-

manifold of the Grassmannian of alln-dimensional subspaces ofV .
Given a pairL0, L1 of complementary Lagrangian subspaces of(V, ω), then

every subspaceL which is complementary toL1 is the graph of a unique linear map
T : L0 −→ L1. Identifying L1 with the dual spaceL∗

0 by the mapv −→ ω(v, · )|L0,
then the subspaceL is Lagrangian if and only ifT corresponds to asymmetric
bilinear form onL0. The mapϕL0,L1 given by:

ϕL0,L1(L) = ω(T · , · )|L0,

whereT : L0 −→ L1 is the unique linear map whose graph isL, is a local chart
on �. The domain ofϕL0,L1 is the set�0(L1) of all Lagrangian subspaces that are
complementary toL1, and it takes values in the vector space Bsym(L0) of symmetric
bilinear forms onL0.

The differential of the chartϕL0,L1 at the pointL0 gives an isomorphism

dϕL0,L1(L0) : TL0� −→ Bsym(L0);
an easy computation shows that such isomorphism does not depend on the choice
of the complementary LagrangianL1 to L0. This observation allows us to identify
for eachL ∈ � the tangent spaceTL� with Bsym(L).

Let L0 ∈ � be fixed. We define the following subsets of�:

�k(L0) = {
L ∈ � : dim(L ∩ L0) = k

}
, k = 0, . . . , n.

Each�k(L0) is a connected real-analytic embedded submanifold of� having codi-
mension1

2k(k + 1) in �; �0(L0) is a dense open contractible subset of�, while its
complementary set

�≥1(L0) =
n⋃

k=1

�k(L0)

is not a regular submanifold of�. It is an analytic subset of� and its regular part
is given by�1(L0), which is a dense open subset of�≥1(L0). Observe that�1(L0)

has codimension 1 in�; moreover, it has anatural transverse orientation in�,
which is canonically associated to the symplectic formω.

It’s well known thatπ1(�) ∼= Z. Using the Hurewicz’s homomorphism, we
conclude that the first singular homology groupH1(�) is isomorphic toZ. The
choice of a sign for such isomorphism is canonically associated to the transverse
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orientation of�1(L0) in �. Since�0(L0) is contractible, the inclusion

(�, ∅) → (
�, �0(L0)

)
induces an isomorphism in the first relative homology group; we then get an iso-
morphism

(2.1) µL0 : H1

(
�, �0(L0)

) −∼=−→ Z.

Definition 2.1. Let � : [a, b] → � be an arbitrary continuous curve with end-
points in�0(L0). We denote byµL0(�) ∈ Z the integer number that corresponds to
the homology class of� in H1(�, �0(L0)) by the isomorphism (2.1). The number
µL0(�) is called theMaslov indexof the curve� relative to the LagrangianL0.

Clearly, the Maslov index is additive by concatenation and invariant by homo-
topies of curves with endpoints in�0(L0).

Given a symmetric bilinear formb on a real vector spaceW, we define the index
of b by

n−(b) = sup
{
dim(W′) : W′ is ab-negative subspace ofW

}
and the co-index ofb by

n+(b) = n−(−b);
the signaturesgn(b) is defined to be the differencen+(b) − n−(b). We have the
following method for computing the Maslov index of a curve in� with endpoints
in �0(L0).

Theorem 2.2. Let � : [a, b] → � be a continuous curve with endpoints in
�0(L0). Then

1. If there exists a Lagrangian L1 ∈ � complementary to L0 such that the
image of� is contained in�0(L1), then

µL0(�) = n+
(
ϕL0,L1

(
�(b)

)) − n+
(
ϕL0,L1

(
�(a)

));
2. If � intercepts�≥1(L0) only when t= t0 and if�|[t0−ε,t0] and�|[t0,t0+ε] are of

class C1, for someε > 0, then

µL0(�) = n+
(
�′(t+

0 )|�(t0)∩L0

) − n−
(
�′(t−

0 )|�(t0)∩L0

)
provided that the symmetric bilinear forms�′(t+

0 )|�(t0)∩L0 and �′(t−
0 )|�(t0)∩L0 are

both nondegenerate.

Proof. See [12]. �

We say that aC1 curve� in � has anondegenerateintersection with�≥1(L0) at
t = t0 if

�(t0) ∈ �≥1(L0)

and �′(t0)|�(t0)∩L0 is nondegenerate. It is known that nondegenerate intersections
with �≥1(L0) are isolated.
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We will now extend the definition of Maslov index to the class of continuous
curves in� whose endpoints do not necessarily belong to�0(L0).

Definition 2.3. Let � : [a, b] −→ � be any continuous curve; theMaslov index
µL0(�) is the semi-integer defined by:

(2.2)

µL0(�) = µL0(�̄�) − n+
(
�̄� ′(a−)|�(a)∩L0

) − n+
(
�̄� ′(b+)|�(b)∩L0

)
+ dim

(
�(a) ∩ L0

) + dim
(
�(b) ∩ L0

)
2

,

where�̄� : [a−ε, b+ε] −→ � is a continuous extension of� satisfying the following
properties:

– �̄�|[a−ε,a] and�̄�|[b,b+ε] are of classC1;
– �̄� ′(a−)|�(a)∩L0 and�̄� ′(b+)|�(b)∩L0 are nondegenerate;
– �̄�(t) ∈ �0(L0) for t ∈ [a − ε, a[ ∪ ]b, b + ε].

The right hand side of (2.2) does not depend on the extension�̄� satisfying the
properties above.

The notion of Maslov index for continuous curves in� given in Definition 2.3
coincides with that of Robbin and Salamon in [17]; we summarize below the main
properties ofµL0 proven in [17]:

Proposition 2.4. The quantityµL0(�) ∈ 1
2Z is additive by concatenation and it

is invariant by homotopies with fixed endpoints in�; moreover, if� is a C1 curve
having only nondegenerate intersections with�≥1(L0), then the following identity
hold:

(2.3)

µL0(�) = n+
(
�′(a)|�(a)∩L0

) + n+
(
�′(b)|�(b)∩L0

)
− dim

(
�(a) ∩ L0

) + dim
(
�(b) ∩ L0

)
2

+
∑

t∈]a,b[

sgn
(
�′(t)|�(t)∩L0

)
.

We now pass to the study of curves in the symplectic group. Denote byω the
symplectic form onV ⊕ V given by

(2.4) ω = ω ⊕ (−ω);
observe thatT : V → V is a symplectomorphism if and only if

Gr(T) ⊂ V ⊕ V

is ω-Lagrangian, where Gr(T) denotes the graph ofT . We get a map

ϕ : Sp(V, ω) � � �−→ Gr(�) ∈ �(V ⊕ V, ω),

which is a diffeomorphism onto an open subset of�(V ⊕ V, ω). Denote by� the
diagonalof V⊕V , which is obviously a Lagrangian subspace of(V⊕V, ω). Given
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� ∈ Sp(V, ω), it’s easily seen that� ∈ 	0 if and only if Gr(�) is not transverse to
�, i.e.:

ϕ−1
(
�≥1(�)

) = 	0.

Using local charts, the differential of the mapϕ is computed as follows:

(2.5) dϕ(�) · A = −ω(Aπ1·, �π1·) ∈ Bsym

(
Gr(�)

)
,

whereπ1 : Gr(�) −→ V is the projection onto the first coordinate andA ∈
T�Sp(V, ω). Now we can give the following

Definition 2.5. Let � : [a, b] → Sp(V, ω) be a continuous curve in the sym-
plectic group; we define theMaslov indexof � to be the semi-integer:

iMaslov(�) = µ�(ϕ ◦ �).

As observed in [17], for continuous curves� with �(a) = Id and �(b) ∈
	±, the above definition of Maslov index is equivalent to the one given in [5] and
[11].

Remark 2.6. Using Proposition 2.4 and formula (2.5), it is possible to obtain
a simple method for computing the Maslov index of a curve� in Sp(V, ω) in the
case that� is of classC1 andϕ ◦ � has only nondegenerate intersections with
�≥1(�). To this aim, observe that the projection onto the first coordinate ofV ⊕ V
restricts to an isomorphism fromϕ(�(t)) ∩ � to Ker(�(t) − Id) which carries the
restriction of(ϕ ◦ �)′(t) to the restriction of−ω(�′(t) · , · ).

From now on, we setV = R
n ⊕ R

n∗ ∼= R
2n and we denote byω the canonical

symplectic form given by

ω
(
(v1, α1), (v2, α2)

) = α2(v1) − α1(v2),

wherev1, v2 ∈ R
n andα1, α2 ∈ R

n∗. We also set

L0 = {0} ⊕ R
n∗

and we write Sp(2n, R) instead of Sp(R2n, ω). If

(2.6) � =
(

A B

C D

)
is a representation of� in block matrix form, we have that� ∈ Sp(2n, R) if and
only if A∗C, B∗D aren×n symmetric matrices andD∗ A− BC∗ = Idn, where Idn
denotes then × n identity matrix.

We define a mapβ : Sp(2n, R) → � by

β(�) = �(L0), ∀� ∈ Sp(2n, R).

Using local coordinates, it is easy to show that the differential dβ(�) is given by:

(2.7) dβ(�) · A = ω(A�−1 · , · )|�(L0) ∈ Bsym

(
�(L0)

)
,

for all � ∈ Sp(2n, R) and for allA ∈ T�Sp(2n, R).
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Obviously,β−1(�0(L0)) ⊂ Sp(2n, R) is open. Writing a symplectomorphism
� ∈ Sp(2n, R) as in (2.6), we have

� ∈ β−1
(
�0(L0)

) ⇐⇒ B is invertible.

Definition 2.7. We define a map

τ : β−1
(
�0(L0)

) → Bsym(Rn)

by setting, for� ∈ β−1(�0(L0)),

τ(�)(v, w) = (δ − α)w, ∀ v, w ∈ R
n,

whereα, δ ∈ R
n∗ are the (uniquely determined) covectors such that�(v, α) =

(v, δ). Using the block matrix representation of� as in (2.6), we have thatτ(�) is
given by

τ(�) = C + (D − Idn)B−1(Idn − A).

Observe that the symmetry ofτ(�) is a consequence of the fact that� is a
symplectomorphism; moreover,

(2.8) � ∈ 	0 ⇐⇒ τ(�) is degenerate.

The derivative ofτ is computed in the next lemma:

Lemma 2.8. For all � ∈ β−1(�0(L0)), the projection onto the first coordinate
of R

n ⊕ R
n∗ mapsKer(� − Id) isomorphically ontoKer(τ (�)).

For A ∈ T�Sp(2n, R), this isomorphism carries the restriction of−ω(A· , · ) to
the restriction of

dτ(�) · A ∈ Bsym(Rn).

Proof. The fact that the projection onto the first coordinate ofR
n ⊕ R

n∗ maps
Ker(� − Id) isomorphically onto Ker(τ (�)) follows easily from Definition 2.7.
We’ll now compute the restriction of dτ(�) · A to Ker(τ (�)). To this aim, consider
a smooth curve�(t) with �(0) = � and�′(0) = A; defineτ(t) = τ(�(t)). For
all t and for allv, w ∈ Ker(τ (�)), we have

(2.9) τ(t)(v, w) = (
δ(t) − α(t)

)
w,

whereα(t), δ(t) ∈ R
n∗ are (the uniquely determined) smooth functions such that

(2.10) �(t)
(
v, α(t)

) = (
v, δ(t)

)
.

Let β ∈ R
n∗ be such that�(w, β) = (w, β); differentiating formula (2.10) att = 0

and applyingω( · , (w, β)) to the result, we obtain:

ω

(
A
(
v, α(0)

)
, (w, β)

)
− α′(0)w = −δ′(0)w.

The conclusion follows by differentiating (2.9) att = 0 and using the above equa-
lity. �
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We use the mapτ to determine the connected components ofβ−1(�0(L0))∩	±:

Lemma 2.9. The open setβ−1(�0(L0)) ∩ 	± in Sp(2n, R) has2(n + 1) con-
nected components; more explicitly, we have that�1, �2 ∈ β−1(�0(L0)) ∩ 	± are
in the same connected component ofβ−1(�0(L0)) ∩ 	± if and only if τ(�1) and
τ(�2) have the same index anddet(B1), det(B2) have the same sign; Bi denotes
the n× n right upper block of�i , i = 1, 2 here.

Proof. Write each� ∈ β−1(�0(L0)) in block matrix form as in (2.6); then�
can be written uniquely as a product

(2.11) � =
(

0 B

−B∗−1 SB

)(
Idn 0

U Idn

)
with S,U symmetricn × n matrices; namely, takeS = DB−1 andU = B−1A.
Using (2.11), we get a diffeomorphism

(2.12) Bsym(Rn)×Bsym(Rn)×GL(n,R) � (S,U, B) �−→ � ∈ β−1
(
�0(L0)

)
.

In terms ofS,U, B, τ(�) can be written as

τ(�) = S+ U − B−1 − B∗−1.

The conclusion now follows easily from (2.8). �

Now we prove the main result of the section:

Lemma 2.10. Let � : [a, b] → Sp(2n, R) be a continuous curve in the sym-
plectic group such that�(a), �(b) ∈ β−1(�0(L0)) ∩ 	±. If � = β ◦ �, then

(2.13) iMaslov(�) + µL0(�) = n+
(
τ(�(b))

) − n+
(
τ(�(a))

)
.

Proof. The proof follows the steps below:
1. iMaslov(�)+µL0(β ◦�) = 0 if � is closed. To see this, recall that the unitary

group U(n) is a deformation retract of Sp(2n, R) and that the determinant map
det : U(n) → S1 induces an isomorphism on the fundamental group. Therefore,
H1(Sp(2n, R)) ∼= π1(Sp(2n, R)) ∼= Z; if a loop � : [a, b] → U(n) is such that
det◦� is a generator ofπ1(S1) then� is a generator ofH1(Sp(2n, R)) ∼= Z. Using
Theorem 2.2 and Remark 2.6, one can compute easily that iMaslov(�)+µL0(β◦�) =
0 on one such generator ofH1(Sp(2n, R)).

2. iMaslov(�) + µL0(β ◦ �) depends only on the connected components of the
open set

β−1
(
�0(L0)

) ∩ 	±

that contain the endpoints of�. From step (1) we see that iMaslov(�) + µL0(β ◦ �)

depends only on the endpoints of�. The proof of step (2) is concluded with the
observation that both sides of (2.13) are additive by concatenation of curves and
both sides of (2.13) vanish on curves which are entirely contained in

β−1
(
�0(L0)

) ∩ 	±.
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3. Equality (2.13)holds in general. For this, it suffices to show that for each
pair (C1, C2) of connected components ofβ−1(�0(L0)) ∩ 	± there exists a curve
� with �(a) ∈ C1, �(b) ∈ C2 and such that (2.13) holds. This is easily done using
Lemma 2.9, Theorem 2.2 and Remark 2.6.�

In the proof of the index theorem in Section 4 we will actually need a version of
the above result in the case that�(b) may be in	0. This is done in the following:

Corollary 2.11. Let� be a curve as in the statement of Lemma2.10, except for
the fact that�(b) may belong to	0.

Then, the following equality holds:

iMaslov(�) + µL0(�) = n+
(
τ(�(b))

) − n+
(
τ(�(a))

)
+ 1

2
dim

(
Ker(�(b) − Id)

)
.

Proof. Let λ : [b, b + ε] −→ Sp(2n, R) be aC1 curve such thatλ(b) = �(b)

and such thatω(λ′(b)λ(b)−1 · , · ) is a positive definite symmetric bilinear form in
R

n ⊕ R
n∗. We can clearly assume thatλ(t) ∈ 	± ∩ β−1(�0(L0)) for t ∈ ]b, b+ ε].

The conclusion is obtained by applying Lemma 2.10 to the concatenation of� and
λ, observing the followings facts:

– iMaslov(λ) = −1
2dim(Ker(�(b) − Id)) (see Remark 2.6);

– µL0(β ◦ λ) = 0;
– n+(τ (λ(b + ε))) = n+(τ (�(b))), see Lemma 2.8.

Actually Lemma 2.8 implies that(τ ◦ λ)′(b) is negative definite on Ker(τ (λ(b)))

and therefore the functionn+(τ (λ(t))) is right continuous att = b (see [12, Lemma
4.2.3]). �

3. Geodesics and the Maslov index

In this section we show how the flow of the Jacobi equation along a geodesic pro-
duces a curve in the symplectic group. We start with some generalities on Hamil-
tonian systems.

Let M be a differentiable manifold and letT M∗ be its cotangent bundle. We de-
note byθ the canonical 1-form ofT M∗ and byω = −dθ the canonical symplectic
form of T M∗. Using a chart(qi )

n
i =1 in M and the corresponding chart(qi , pi )

n
i =1 in

T M∗, one has

θ =
n∑

i =1

pi dqi , ω =
n∑

i =1

dqi ∧ dpi .

Let H : T M∗ → R be a smooth map, called theHamiltonian, and let !H be
the symplectic gradient ofH which is defined by dH = ω( !H , · ); we call !H the
Hamiltonian vector fieldassociated toH . By a solution of Hwe mean an integral
curve of !H .
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We denote byF the flow of the vector field!H , that is, for allp ∈ T M∗ the curve
t �−→ F(t, p) ∈ T M∗ is a maximal solution of the HamiltonianH , with F(0, p) =
p, for all p ∈ T M∗; it is well known thatFt = F(t, · ) is a symplectomorphism
between open subsets ofT M∗.

We will consider the special case thatM is endowed with a semi-Riemannian
metric g, i.e., g is a nondegenerate metric tensor, andH : T M∗ → R is thege-
odesic Hamiltonian H(q, p) = 1

2g
−1(p, p). Denote by∇ the Levi-Civita con-

nection and byR its curvature tensor chosen with sign conventionR(X, Y) =
∇X∇Y − ∇Y∇X − ∇[X,Y] . We have that the solutions of the HamiltonianH are of
the formt �−→ (γ (t), g · γ̇γ (t)), whereγ : [a, b] −→ M is a geodesic andg is thought
as a linear map from the tangent space to its dual. For each(q, p) ∈ T M∗, the
Levi-Civita connection∇ induces a decomposition

T(q,p)T M∗ ∼= Hor(q,p) ⊕ Ver(q,p),

where Ver(q,p) = Ker(dπ(q,p)) = Tp(Tq M)∗. We identify Hor(q,p) with Tq M using
dπ(q,p) and Ver(q,p)

∼= Tq M∗. Therefore, we have

T(q,p)T M∗ ∼= Tq M ⊕ Tq M∗.

Givenξ ∈ T(q,p)T M∗, we writeξ = (v, a), with v ∈ Tq M anda ∈ Tq M∗. Using
Cartan’s formula to compute dθ , one can show

(3.1) ω(q,p)

(
(v1, a1), (v2, a2)

) = a2(v1) − a1(v2).

Let γ : [a, b] → M be a geodesic. Let(Vi )
n
i =1 be a smooth referential ofT M

alongγ , that is, for eacht ∈ [a, b], (Vi (t))n
i =1 is a basis forTγ (t)M . We denote by

(V∗
i (t))n

i =1 the dual basis of(Vi (t))n
i =1.

Let 	(t) = (γ (t), g · γ̇γ (t)) be the solution ofH corresponding toγ . Obviously,
	(t) = Ft−a(	(a)) for t ∈ [a, b]; since the Jacobi equation is the linearization of
the geodesic equation, it follows easily that for any Jacobi fieldv alongγ we have

(3.2) dFt−a

(
	(a)

) · (
v(a), g · v′(a)

) = (
v(t), g · v′(t)

)
,

for t ∈ [a, b], wherev′ denotes the covariant derivative ofv alongγ .
Define a referential ofT(T M∗) along	 by settingξ = (ξi )

2n
i =1, where

ξi = (Vi , 0), ξn+i = (0,V∗
i ), i = 1, . . . , n.

Let ψt : T	(t)T M∗ −→ R
n ⊕ R

n∗ be the isomorphism that carries the basis
(ξi )

2n
i =1 into the canonical basis. Using (3.1), it is easy to see thatψt is a symplecto-

morphism. Therefore, the map

(3.3) �t = ψt ◦ dFt−a

(
	(a)

) ◦ ψ−1
a

is an element of Sp(2n, R), for all t ∈ [a, b]. We say that(ψt)t∈[a,b] is asymplectic
trivialization alongγ .

If v is a Jacobi field alongγ and if a = g · v′, then setting(v(t), α(t)) =
ψt(v(t), a(t)), it follows from (3.2) and (3.3) that(v(t), α(t)) = �(t)(v(a), α(a));
moreover, it is easy to show that(v, α) is a solution of the first order linear homo-
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geneous system

(3.4)

(
v

α

)′
= X

(
v

α

)
,

with

X =
(−σ g−1

gR σ ∗

)
whereσ , g andR are defined byV i

′ = �n
j =1σ j i V j , gi j = g(Vi ,V j ) and

R(γ̇γ ,V j )γ̇γ =
n∑

i =1

Ri j Vi .

It follows that

(3.5) �′(t) = X(t)�(t),

for t ∈ [a, b]. Observe thatX is a smooth curve in the Lie algebra of the symplectic
group Sp(2n, R); in the terminology of [13] and [16] a system of the form (3.4) is
called asymplectic differential system. Symplectic differential systems are more
generally obtained using a symplectic trivialization along a solution of a (possibly
time-dependent) Hamiltonian system in an arbitrary symplectic manifold endowed
with a Lagrangian distribution, see [13, Section 3] for details.

Assume now thatγ is aperiodicgeodesic, i.e.,γ (a) = γ (b) andγ̇γ (a) = γ̇γ (b).
Choose the referential(Vi )

n
i =1 along γ in such a way thatVi (a) = Vi (b), i =

1, . . . , n. We’ll say, in this case, that the corresponding symplectic trivialization
(ψt)t∈[a,b] is periodic.

Recall that a closed curveγ : [a, b] → M is said to beorientation preserving
if for some (and hence for any) continuous referential(Vi )

n
i =1 alongγ the bases

(Vi (a))n
i =1 and(Vi (b))n

i =1 determine the same orientation ofTγ (a)M = Tγ (b)M . For
instance, ifM is orientable then anyγ is orientation preserving. It is easy to prove
that if γ is orientation preserving then there exists a smooth referential(Vi )

n
i =1

alongγ with Vi (a) = Vi (b), i = 1, . . . , n.
We define thenullity null(γ ) of γ to be the dimension of the space of Jacobi

fieldsv alongγ such thatv(a) = v(b) andv′(a) = v′(b). Obviously,

(3.6) null(γ ) = dim
(
Ker

(
�(b) − Id

))
.

Definition 3.1. If γ is an orientation preserving periodic geodesic, define the
Maslov indexof γ by

iMaslov(γ ) = iMaslov(�),

where� corresponds toγ by the choice of a periodic symplectic trivialization
(ψt)t∈[a,b] and iMaslov(�) was introduced in Definition 2.5.

It is not difficult to show that iMaslov(�) does not depend on the choice of the
periodic symplectic trivialization(ψt)t∈[a,b] .
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The curve in Sp(2n, R) corresponding to the choice of a different periodic sym-
plectic trivialization is of the form̃�� t = φt�tφ

−1
a , where

φt =
(

A(t) 0

0 A(t)∗−1

)
and A is a loop in the general linear group ofR

n. The loopφ in Sp(2n, R) is
contractible, which implies that iMaslov(�) = iMaslov(�̃�).

So iMaslov(γ ) is indeed well defined.

4. The index theorem

In this section we state and prove the main theorem of the paper. As in the previ-
ous section,(M, g) denotes a semi-Riemannian manifold. Let!(M) be the set of
closed curvesη : [a, b] → M of Sobolev classH1, i.e.,

!(M) = {
η : [a, b] −H1−−→ M : η(a) = η(b)

}
.

We define theaction functional f : !(M) → R by

f (η) = 1

2

∫ b

a
g
(
η′(t), η′(t)

)
dt.

It is well known that!(M) has the structure of an infinite dimensional Hilbert
manifold and thatf is a smooth map; moreover, it is easy to see that the critical
points of f in !(M) are the periodic geodesics. Ifγ ∈ !(M) is a periodic geodesic,
the second variation off atγ , or periodic index form(denoted byI per), is defined
on the spaceTγ !(M) = {v vector field alongγ of classH1: v(a) = v(b)} and it
is given by

(4.1) I per(v, w) = d2 fγ (v, w) =
∫ b

a

[
g(v′, w′) + g

(
R(γ ′, v)γ ′, w

)]
dt.

From now on we assume that(M, g) is aLorentzian manifold, i.e., that the metric
tensorg has index 1. Recall that a Lorentzian manifold is calledstationary if it
admits a timelike Killing vector field, i.e., a Killing vector fieldY with g(Y, Y) < 0.

Now we have the following:

Theorem 4.1. Let (M, g) be a stationary Lorentzian manifold and Y a timelike
Killing vector field.

SetN = {η ∈ !(M) : g(η′, Y) ≡ const}. Then:
1. N is a Hilbert submanifold of!(M);
2. The critical points of the action functional f restricted toN are precisely

the periodic geodesics;
3. Let γ : [a, b] → M be an orientation preserving periodic geodesic. Ifγ (b)

is not conjugate toγ (a) alongγ then the index of Iper in TγN is given by:

n−(I per|TγN ) = 1 − iMaslov(γ ) − 1
2 null(γ ).
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Proof. The proof of (1) and (2) is analogous to the proof of [9, Proposition 3.1,
Theorem 3.3],mutatis mutandis.

To prove step (3), setK = TγN ; a simple computation yields

K = {
v ∈ Tγ !(M) : g(v′, Y) − g(v, Y′) ≡ const

}
.

Define the spaces

K0 = {
v ∈ K : v(a) = v(b) = 0

}
and

P = {
vJacobi vector field alongγ : v(a) = v(b)

}
.

Sinceγ (b) is not conjugate toγ (a) alongγ , a Jacobi vector field alongγ is
uniquely determined by its values at the endpoints. Therefore

K = K0 ⊕ P.

Integration by parts on (4.1) shows thatK0 andP are I per-orthogonal. Choose a
periodic symplectic trivialization(ψt)t∈[a,b] alongγ and define� as in (3.3). Using
(3.2) and integration by parts in (4.1), it is easy to see thatI per|P corresponds by
the isomorphism

P � v �−→ v(b) ∈ R
n

to the symmetric bilinear formτ(�(b)) (see Definition 2.7). Hence

(4.2) n−(I per|K) = n−(I per|K0) + n−
(
τ
(
�(b)

))
.

Consider the curveλ0 : [a − π/2, a] −→ Sp(2n, R) given by:

λ0(t) =
(

cos(t − a) Idn sin(t − a) Idn

−sin(t − a) Idn cos(t − a) Idn

)
.

Applying Corollary 2.11 to the concatenationλ0 · �, we have that

(4.3)

iMaslov(λ0·�)+µL0(β◦(λ0·�))

= n+
(
τ(�(b))

)−n+

(
τ

(
λ0

(
a− π

2

)))
+ 1

2
dim

(
Ker(�(b)−Id)

)
.

We now compute each one of the terms appearing in (4.3). Observe first that the
dimension of Ker(�(b) − Id) is equal to the nullity ofγ (recall (3.6)).

By Remark 2.6, we have

(4.4) iMaslov(λ0 · �) = iMaslov(�) + iMaslov(λ0) = iMaslov(�) − n.

Sinceτ(λ0(a − π/2)) = 2Idn, we have

(4.5) n+

(
τ

(
λ0

(
a − π

2

)))
= n.
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Setting� = β ◦ (λ0 · �), we obtain:

µL0

(
β ◦ (λ0 · �)

) = µL0(�|[a−π/2,a+ε]) + µL0(�|[a+ε,b]),

for ε > 0 small enough. In [8], it is shown that

(4.6) µL0(�|[a+ε,b]) = n−(I per|K0).

In order to computeµL0(�|[a−π/2,a+ε]), we use Theorem 2.2. From (2.7) it follows
that�′(a−) is positive definite; then

(4.7) n−
(
�′(a−)

) = 0.

Using (3.5) and (2.7) it follows that�′(a+) is nondegenerate and

(4.8) n+
(
�′(a+)

) = n − 1.

From (4.7) and (4.8), we have

(4.9) µL0(�|[a−π/2,a+ε]) = n − 1.

From (4.6) and (4.9) we get

(4.10) µL0

(
β ◦ (λ0 · �)

) = n−(I per|K0) + n − 1.

Observe that, using Lemma 2.8, we have the following equality:

(4.11)
n+

(
τ(�(b))

) = n − n−
(
τ(�(b))

) − dim
(
Ker(�(b) − Id)

)
= n − n−

(
τ(�(b))

) − null(γ ).

From (4.3), (4.4), (4.5), (4.10) and (4.11) we conclude that

(4.12) n−
(
τ(�(b))

) = 1 − iMaslov(γ ) − n−(I per|K0) − 1
2 null(γ ).

Substituting (4.12) in (4.2), we complete the proof of the theorem.�
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