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On the Morse and the Maslov index for
periodic geodesics of arbitrary causal
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Abstract. We prove a version of the Morse Index Theorem for periodic geode-
sics in a stationary Lorentzian manifold. This theorem relates the index of a
suitable restriction of the second variation of the Lorentzian action functional
to the Maslov index of a periodic geodesic. The Maslov index of a periodic
geodesic is a semi-integer defined in terms of the flow of the Jacobi equation
along the geodesic, which produces a curve in the symplectic group.
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1. Introduction

The classical Morse index theorem in Riemannian geometry for geodesics be-
tween two fixed points (see for instance [4]) gives an equality between the Morse
index of the action functionaf (y) = %f; g(y’, y’) at a critical pointy, which
is a geodesic, and the number of conjugate points ajarigecall that the Morse
index of f is the index of the second variation 6f(called theindex form), which
is a symmetric bilinear form defined on the space of vector fields gtoranishing
at the endpoints.

The theorem generalizes to the case of periodic geodesics, where the Morse
index of the action functional is given by the index of the index form defined on the
space of vector field¥ alongy with V (a) = V (b); the theorem gives an equality
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between the Morse index df aty and the sum of the number of conjugate points
alongy with a term called by Morse therder of concavityof y (see [10]).

When passing to the case of Lorentzian manifolds, i.e., manifolds endowed with
a metric tensor of index 1, it is well known that the Morse index theorem for
geodesics between fixed points generalizes in the casenspacelikegeodesics
(see [1,2]), and for this generalization one has to consider the index of the restric-
tion of the index form to the space of vector fields which are everywhere orthogonal
to y. In [8] the authors prove a general formulation of the Lorentzian Morse index
theorem in the case of stationary Lorentzian manifolds for geodesics of any causal
character. For this generalization, one needs to consider the index of the restriction
of the index form to the space of vector fields alongatisfying a suitable con-
servation law with respect to a fixed timelike Killing vector field. Moreover, the
number of conjugate points along the geodesic (that can be infinite in the space-
like case) is replaced by an integer called khaslov indexof the geodesic, which
roughly speaking gives an algebraic count of the conjugate points gloktpre
precisely, the Maslov index of a geodesic is defined as an intersection number of
a curve in the Lagrangian Grassmanniamf a symplectic space with tHdaslov
cycleof A (see for instance [12] for details). We remark that an even deeper gener-
alization of the Morse Index Theorem for general semi-Riemannian manifolds can
be found in [14, 15].

In this paper, following the ideas of [8], we prove a Lorentzian version of the
Morse index theorem for periodic geodesics of any causal character in the case of
stationary manifolds. In analogy with [8], given a timelike Killing vector figgd
we consider the restriction of the action functional to the spda& closed curves
n satisfying the conservation law(n’, Y) = c, (constant). The critical points of
the action functionalf in A are precisely the periodic geodesics (Theorem 4.1).
Moreover, given a periodic geodesit the Morse index of the restriction of the
action functional toV aty is finite.

Using a periodic trivialization of the tangent bundle algnghe flow of the Ja-
cobi equation along produces a smooth curve in the symplectic grou8pR)
starting at the identity. Using an embedding of(Zp R) into the Lagrangian
Grassmannian of aMddimensional symplectic space we define a notion of Maslov
index for curvesd in Sp(2n, R). This notion of Maslov index gives a sort of alge-
braic count of the instantswhen®(t) is a symplectomorphism having one of its
eigenvalues equal to 1; in the geodesic case, these instants play the role of “conju-
gate points” along a periodic geodesic. For instance, the dimension of the kernel of
the index form (defined as thaullity of the geodesic) equals the geometric multi-
plicity of the eigenvalue 1 ob(b).

Observe that each periodic geodesis a degenerate critical point ¢f namely,

y andY o y are always in the kernel of the index form. There are several notions
of Maslov index in the literature; in order to deal with degenerate geodesics, the
appropriate notion is the one given in [17] for arbitrary curves in the symplectic
group. Given a continuous curdein the symplectic group §gn, R), the Maslov
index ivasioW(®) is an intersection number @ with the varietyI'g consisting of
symplectomorphisms having eigenvalue 1. Whieiis obtained from the flow of
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the Jacobi equation along a geodesjthe degeneracy of corresponds to the fact
that the final endpoint o® is in I'g, in which case a suitable correction term (a
semi-integer number) is added in the computationgfid/(P).

The main theorem of the paper gives a relation between the Maslov index and
the Morse index of a periodic geodesic in a stationary Lorentzian manifold. It
should be observed that a different formulation of the periodic index theorem in
the Lorentzian case could be given in terms of the order of concavity of the geo-
desic. However, the authors believe the formulation involving the Maslov index of
symplectic paths is more interesting, due to the fact that it allows the development
of iteration formulas, in the spirit of [3, 7].

For a better understanding of the material presented we give a short overview of
the contents of each section.

In Section 2 we recall some basic properties of the geometry of the symplectic
group and the Lagrangian Grassmanniamf a symplectic space, and we recall
the definition of the Maslov index for curves k. We also give the definition of
Maslov index for curves in the symplectic group; the main results of the section are
Lemma 2.10 and its Corollary 2.11, where we establish a relation between the two
notions of Maslov index.

In Section 3 we describe how to associate to a periodic geodesic a curve in
the symplectic group; we use a Hamiltonian formalism which is well suited in the
context of symplectic geometry.

Finally, in Section 4 we state and prove our main theorem; its proof uses the
index theorem of [8] and the technical Lemma 2.10 with its Corollary 2.11.

2. The Maslov index of curves in the Lagrangian Grassmannian and in
the symplectic group

In this section we will recall some basic facts concerning the geometry of the La-
grangian Grassmannian and of the symplectic group of a symplectic space; proofs
of such facts can be found for instance in [5, 6,12, 17].

Let (V, w) be asymplectic vector space.e., V is a real vector space with
dim(V) = 2nandw : V x V — R is an anti-symmetric nondegenerate bilinear
form; a linear operatof : V — V is called asymplectomorphisifi it preserves
. Thesymplectic grousp(V, w) of (V, w) is the Lie group of all symplectomor-
phisms of(V, w).

We define

Iy ={T e SpV, w) : de(T — Id) > 0},
. ={T eSpV, w) : det(T —Id) < 0}

and
o= {T € Sp(V, w) : det(T — Id) = O};

wealsosel'. =T  UT_.
We have thal", andI"_ are open arc-connected subsets af\§m).
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A subspacd. C V is said to be dagrangian subspacé
w|L=0 and dimL)=n.

We denote byA (V, w), or more simply byA, the set of all Lagrangian subspaces
of (V, w):

A(V,0) = A ={L C V: L is a Lagrangian subspace®f, w)}.

The setA is called theLagrangian Grassmanniaaf the symplectic space/, w)
and it is a compact, connected real-analgtilcn + 1)-dimensional embedded sub-
manifold of the Grassmannian of aldimensional subspaces @t

Given a pairLg, L; of complementary Lagrangian subspacegVfw), then
every subspack which is complementary th; is the graph of a unique linear map
T : Lo — Lj. Identifying L, with the dual spac&§ by the map — w(v, -)|L,,
then the subspack is Lagrangian if and only ifT corresponds to aymmetric
bilinear form onL,. The mapyp, ., given by:

gOLo,Ll(L) = C()(T N )|L0,

whereT : Lo — L is the unique linear map whose graphlisis a local chart
on A. The domain ofp,, , is the setAq(L1) of all Lagrangian subspaces that are
complementary th 1, and it takes values in the vector spaeg.BL o) of symmetric
bilinear forms onL.

The differential of the chaxp, , , at the pointLy gives an isomorphism

Aoy, (Lo) @ TL,A —> Bsym(Lo);

an easy computation shows that such isomorphism does not depend on the choice
of the complementary Lagrangidn to L. This observation allows us to identify
for eachL € A the tangent spach A with Bsym(L).

Let Lo € A be fixed. We define the following subsets/of

AL ={L e A:dimLNLy) =k}, k=0,...,n

EachAk(Ly) is a connected real-analytic embedded submanifold lb&ving codi-
mension% k(k+1)in A; Ao(Lg) is a dense open contractible subsengivhile its
complementary set

As1(Lo) = [ Ax(Lo)
k=1

is not a regular submanifold ak. It is an analytic subset of and its regular part
is given byA1(Lo), which is a dense open subset/of;(Lo). Observe that\1(L o)
has codimension 1 ii\; moreover, it has aatural transverse orientation in,
which is canonically associated to the symplectic fasm

It's well known thatz,(A) = Z. Using the Hurewicz’'s homomorphism, we
conclude that the first singular homology grobip(A) is isomorphic toZ. The
choice of a sign for such isomorphism is canonically associated to the transverse
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orientation ofA1(Lg) in A. SinceAq(Lg) is contractible, the inclusion
(A, 8) — (A, Ao(Lo))

induces an isomorphism in the first relative homology group; we then get an iso-
morphism

(21) Hig - Hl(A, AO(LO)) i) 7.

Definition 2.1. Let? : [a, b] — A be an arbitrary continuous curve with end-
points inAg(Lo). We denote by ,(¢) € Z the integer number that corresponds to
the homology class of in Hy(A, Ag(Lg)) by the isomorphism (2.1). The number
i, (£) is called theMaslov indeof the curvet relative to the Lagrangiah.

Clearly, the Maslov index is additive by concatenation and invariant by homo-
topies of curves with endpoints ifig(L ).
Given a symmetric bilinear forr on a real vector spad#/, we define the index
of b by
n_(b) = sup{dim(W’) : W'is ab-negative subspace @}

and the co-index of by
ny(b) =n_(-b);

the signaturesgn(b) is defined to be the differenag, (b) — n_(b). We have the
following method for computing the Maslov index of a curveArwith endpoints
in Ao(Lo).

Theorem 2.2. Let ¢ : [a,b] — A be a continuous curve with endpoints in
Ao(Lg). Then

1. If there exists a Lagrangian i € A complementary to 4 such that the
image of¢ is contained inAg(L 1), then

160 =N (901, (60) ) =y (01,1, (€@));

2. If £ interceptsA~1(Lo) only when t= to and if €|y, t;) @and£], 1o+ are of
class &, for somes > 0, then

o) = N (€D leoinLe) — N= (€' () letoynio)

provided that the symmetric bilinear fornd&ty)eunL, and €' (ty)lenL, are
both nondegenerate.

Proof. See[12]. O

We say that &€ curvel in A has anondegeneratatersection withA -1 (Lo) at
t =toif

£(to) € A=1(Lo)

and €'(to)let)nL, IS NOndegenerate. It is known that nondegenerate intersections
with A-1(Lo) are isolated.
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We will now extend the definition of Maslov index to the class of continuous
curves inA whose endpoints do not necessarily belong §oL o).

Definition 2.3. Let? : [a,b] — A be any continuous curve; thdaslov index
i, (£) is the semi-integer defined by:

Lo (0) = uLy@) — Ny (8 @) e@nto) — N (€O ewyniy)

(2.2) N dim(¢(a) N Lo) + dim(¢(b) N Lo)
5 ,

wheref : [a—e, b+¢] — A is a continuous extension é&atisfying the following
properties:

— £lja_e.a) andL|p b are of clas<l;

— 2'(@)|e@nL, ande’(b*)|ymnL, are nondegenerate;

—£(t) € Ag(Lg)fort e [a—e,a[ U]b, b+ ¢].
The right hand side of (2.2) does not depend on the exteriisatisfying the
properties above.

The notion of Maslov index for continuous curvesAngiven in Definition 2.3
coincides with that of Robbin and Salamon in [17]; we summarize below the main
properties ofu , proven in [17]:

Proposition 2.4. The quantity ,(¢) € %Z is additive by concatenation and it
is invariant by homotopies with fixed endpointsAinmoreover, if¢ is a C* curve
having only nondegenerate intersections with, (L), then the following identity
hold:

1o (0) = Ny (€@ ]e@nio) + Nt (€O lewynL,)

dim(¢(a) N Lo) + dim(¢(b) N Lo)
(2.3) - 5

+ D sgn(l ®lupnL,)-

telabl

We now pass to the study of curves in the symplectic group. Denote the
symplectic form orV @ V given by

(2.4) o =00 (—w);

observe thal : V — V is a symplectomorphism if and only if
Gr(T)cVveV

is w-Lagrangian, where GT) denotes the graph df. We get a map
@ :SpV,w) > d—> Gr(®) e A(V DV, ®),

which is a diffeomorphism onto an open subseth@V @ V, @). Denote byA the
diagonalof V&V, which is obviously a Lagrangian subspacévtpV, ). Given
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® € Sp(V, w), it’s easily seen thab € Ty if and only if Gr(®) is not transverse to
A ie.:
¢} (A-1(A)) = To.

Using local charts, the differential of the maps computed as follows:
(25) dp(q)) A= _w(Aﬂ1'7 (D7T1') € Bsym(Gr(qD)),

wheren; : Gr(®) — V is the projection onto the first coordinate aid e
ToSp(V, w). Now we can give the following

Definition 2.5. Let @ : [a,b] — Sp(V, w) be a continuous curve in the sym-
plectic group; we define thiglaslov indexof @ to be the semi-integer:

iMaslol D) = MA(QD o ®).

As observed in [17], for continuous curvds with ®(@) = Id and ®(b)
'y, the above definition of Maslov index is equivalent to the one given in [5] and
[11].

Remark 2.6. Using Proposition 2.4 and formula (2.5), it is possible to obtain
a simple method for computing the Maslov index of a cuiven Sp(V, w) in the
case thatb is of classC! and¢ o ® has only nondegenerate intersections with
A-1(A). To this aim, observe that the projection onto the first coordinaté®fVv
restricts to an isomorphism frop(®(t)) N A to Ker(®(t) — Id) which carries the
restriction of(¢ o ®)’(t) to the restriction of-w(d'(t)-, -).

From now on, we se¥ = R" @ R™ = R?" and we denote by the canonical
symplectic form given by

w((v1, 1), (v2, 2)) = aa(v1) — a1 (v2),
wherevy, v, € R" andaq, oo € R™. We also set
Lo={0}®R"™
and we write Sf2n, R) instead of SER?", w). If

A B
o o-(2 D)

is a representation @b in block matrix form, we have thab € Sp(2n, R) if and
only if A*C, B*D aren x n symmetric matrices anBD*A — BC* = Id,,, where Ig,
denotes the x n identity matrix.

We define a map : Sp(2n, R) — A by

B(®) = d(Lo), Y& € Spi2n, R).
Using local coordinates, it is easy to show that the differenisalig is given by:
(2.7) B(P) - A= (AP, )]y € Bsym(®(Lo)),
forall ® € Sp(2n, R) and for allA € ToSp(2n, R).
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Obviously, B71(Ao(Lg)) C Sp2n, R) is open. Writing a symplectomorphism
® € Sp(2n, R) as in (2.6), we have
® e pHAo(Lp)) <= Bisinvertible
Definition 2.7. We define a map
7 : 7 Ao(Lo) = Bsym(R")
by setting, ford € B~1(Ag(Lo)),
T(D®)(v,w) = (§ —)w, Vo, weR",

wherea, § € R™ are the (uniquely determined) covectors such thét, o) =
(v, 8). Using the block matrix representation®fas in (2.6), we have that(®) is
given by

7(®) = C + (D — Id,)B~X(ld,, — A).

Observe that the symmetry af®) is a consequence of the fact thatis a
symplectomorphism; moreover,

(2.8) dely <= t©(d)isdegenerate
The derivative oft is computed in the next lemma:

Lemma 2.8. For all ® € ~1(Ao(Lo)), the projection onto the first coordinate
of R" & R™ mapsKer(® — Id) isomorphically ontdKer(z (®)).

For A € TeSp(2n, R), this isomorphism carries the restriction efw(A-, -) to
the restriction of

dr(®) - A € Bym(R™.

Proof. The fact that the projection onto the first coordinatéR6f® R maps
Ker(® — Id) isomorphically onto Ker (®)) follows easily from Definition 2.7.
We'll now compute the restriction ofid®) - Ato Ker(z (®)). To this aim, consider
a smooth curveb(t) with ®(0) = ® and®’'(0) = A; definet(t) = 7(P(t)). For
all t and for allv, w € Ker(z(®)), we have

(2.9) T, w) = (8(t) —a®))w,
wherea(t), §(t) € R"™ are (the uniquely determined) smooth functions such that
(2.10) D) (v, () = (v, 8(1)).

Let8 € R™ be such tha®(w, 8) = (w, B); differentiating formula (2.10) a= 0
and applyingo(-, (w, B)) to the result, we obtain:

o(Alv, @), (w, ) — &' Ow = —8'Opw.

The conclusion follows by differentiating (2.9) at= 0 and using the above equa-
lity. O
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We use the map to determine the connected component8 of(Ao(Lo)) NT 4

Lemma 2.9. The open seB~1(Ag(Lo)) N '+ in Sp(2n, R) has2(n + 1) con-
nected components; more explicitly, we have thatd, € ~1(Ag(Lo)) NI are
in the same connected componenpBof(Ag(Lg)) N Iy if and only if 7 (®4) and
7(P;) have the same index amldt B,), det(B,) have the same sign;; Blenotes
the nx n right upper block ofd;, i = 1, 2 here.

Proof. Write each® € 8~1(Ao(Lo)) in block matrix form as in (2.6); the®
can be written uniquely as a product

0 B\/ld, 0
(2.11) (D:(—B*l SB)(U Idn)

with S, U symmetricn x n matrices; namely, tak€ = DB~ andU = B !A.
Using (2.11), we get a diffeomorphism

(2.12) Bym(R™) x Bsym(R™ x GL(N,R) 3 (S,U, B) — ® € f~(Ao(Lo)).
In terms ofS, U, B, (®) can be written as
T(®)=S+U - Bt - B
The conclusion now follows easily from (2.8). O
Now we prove the main result of the section:

Lemma 2.10. Let® : [a,b] — Sp(2n, R) be a continuous curve in the sym-
plectic group such thab(a), ®(b) € B~ 1(Ag(Lo)) NT4. If £ = B o ®, then

(2.13) Masiol @) + 111, () = ny (t((b))) — Ny (z(P(@)).

Proof. The proof follows the steps below:

L. iMasiol(P) + 11, (B o @) = 0if ® is closed To see this, recall that the unitary
group Un) is a deformation retract of $pn, R) and that the determinant map
det : Un) — St induces an isomorphism on the fundamental group. Therefore,
H1(Sp(2n, R)) = 71(Sp(2n, R)) = Z; if aloop @ : [a, b] — U(n) is such that
deto ® is a generator of,(S') thend is a generator oH;(Sp(2n, R)) = Z. Using
Theorem 2.2 and Remark 2.6, one can compute easilWaat{ ) +u,(Bo®) =
0 on one such generator bl (Sp(2n, R)).

2. imaslo(P) + 1, (B o @) depends only on the connected components of the
open set

B H(Ao(Lo)) NI

that contain the endpoints df. From step (1) we see thafakio(P) + 1, (B o )
depends only on the endpoints @f The proof of step (2) is concluded with the
observation that both sides of (2.13) are additive by concatenation of curves and
both sides of (2.13) vanish on curves which are entirely contained in

B~ (Ao(Lo) NI
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3. Equality (2.13) holds in general For this, it suffices to show that for each
pair (Cy, C») of connected components Bf1(Ag(Lg)) N I's there exists a curve
® with ®(a) € C;, ¢(b) € C; and such that (2.13) holds. This is easily done using
Lemma 2.9, Theorem 2.2 and Remark 2.6

In the proof of the index theorem in Section 4 we will actually need a version of
the above result in the case thiath) may be inlg. This is done in the following:

Corollary 2.11. Let® be a curve as in the statement of Lenm2nk0, except for
the fact thatd (b) may belong td™.
Then, the following equality holds:

iMasto(®) + Lo (£) =Ny (t(CD(b))) —ny (‘[(CD(a)))
+ % dim(Ker(®(b) — 1d)).

Proof. Letx : [b, b+ ¢] — Sp2n, R) be aC?! curve such that(b) = ®(b)
and such thab (X' (b)a(b)~1-, -) is a positive definite symmetric bilinear form in
R" @ R"™*. We can clearly assume thiatt) € I'. N B~1(Ag(Lo)) fort € Jb, b+¢].
The conclusion is obtained by applying Lemma 2.10 to the concatenatibrantl
A, observing the followings facts:

— iMasiov(d) = —dim(Ker(®(b) — Id)) (see Remark 2.6);

— Uip(BoA) =

—ny (t(A(b+¢))) =n,(r(®(b))), see Lemma 2.8.
Actually Lemma 2.8 implies thatr o A)'(b) is negative definite on Keét (A (b)))
and therefore the functiam, (z (A(t))) is right continuous at = b (see [12, Lemma
423). O

3. Geodesics and the Maslov index

In this section we show how the flow of the Jacobi equation along a geodesic pro-
duces a curve in the symplectic group. We start with some generalities on Hamil-
tonian systems.

Let M be a differentiable manifold and I&tM* be its cotangent bundle. We de-
note byé the canonical 1-form of M* and byw = —d6 the canonical symplectic
form of T M*. Using a chartq ), in M and the corresponding chac, pi){_, in
T M*, one has

0 =_Zn:pid(1i, w=_zn:in Adp.

LetH : TM* — R be a smooth map, called thrdﬁmlltonlan and IetH be
the symplectlc gradient dfi which is defined by &8l = a)(H -); we call H the
Hamiltonian vector fieldassociated té1. By a solution of Hwe mean an integral
curve ofH.
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We denote byF the flow of the vector fieldd, that is, for allp e T M* the curve
t — F(t, p) € T M*is a maximal solution of the Hamiltoniad, with F (0, p) =
p, for all p € T M*; it is well known thatF, = F(t, -) is a symplectomorphism
between open subsets BiM*.

We will consider the special case thit is endowed with a semi-Riemannian
metric g, i.e., g is a hondegenerate metric tensor, ahd T M* — R is thege-
odesic Hamiltonian Hq, p) = %g*l(p, p). Denote byV the Levi-Civita con-
nection and byR its curvature tensor chosen with sign conventi®(X, Y) =
VxVy — VyVx — Vix v;. We have that the solutions of the Hamiltonieinare of
the formt — (y (1), g-y (1)), wherey : [a, b] — M is a geodesic anglis thought
as a linear map from the tangent space to its dual. For @acp) € T M*, the
Levi-Civita connectiorv induces a decomposition

Ti.p T M* = Horgq.p) ® Verq.p),

where Ve, p) = Ker(drqg,p) = Tp(TqM)*. We identify Hoyg, p) with TyM using
drr(q,p) and Vegg, p) = TqM*. Therefore, we have

Ta.pTM* =TqM @ TyM*.

Given¢ e T, p T M*, we write = (v, a), withv € TyM anda € T;M*. Using
Cartan’s formula to computeddone can show

(3.1) w@.p ((01, 1), (02, 42)) = az(v1) — a1 (v2).

Lety : [a,b] — M be a geodesic. La&d;)!'_, be a smooth referential af M
alongy, that is, for each < [a, b], (Vi (t)){_, is a basis fofT, ;)M. We denote by
(V¥ (t)), the dual basis ofV (1)),

LetT(t) = (y(t), g - y (1)) be the solution oH corresponding te. Obviously,
') = F_a(T (@) fort € [a, b]; since the Jacobi equation is the linearization of
the geodesic equation, it follows easily that for any Jacobi fiedtbngy we have

(3.2) oF o(T@) - (v@), g-v'@) = (b(t), g - v'(V)),

fort € [a, b], wherev’ denotes the covariant derivativewélongy .
Define a referential of (T M*) alongT by settingé = (&), where

§=MW,0, &4 =0V, i=1,....,n.

Let Y4 @ Try T M* — R" @ R"™ be the isomorphism that carries the basis
(&)7", into the canonical basis. Using (3.1), it is easy to seeh#t a symplecto-
morphism. Therefore, the map

(3.3) @ = Y o dF_a(T' (@) o ¥ *

is an element of §@n, R), for allt € [a, b]. We say thaty)ic[a,n) IS asymplectic
trivialization alongy .

If vis a Jacobi field alongy and ifa = g - v/, then setting(v(t), a(t)) =
Ve (o(t), a(t)), it follows from (3.2) and (3.3) thatw(t), a(t)) = &(t)(v(a), x(a));
moreover, it is easy to show that, «) is a solution of the first order linear homo-
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geneous system

w0 ()

with
= (o %)
gR o*
whereo, g andR are defined by’ = £7_,0;Vj, gj = g}, V) and
n
RG V)Y =) RiW.
i—1

It follows that
(3.5) @'(t) = X(t)D(t),

fort e [a, b]. Observe thaK is a smooth curve in the Lie algebra of the symplectic
group Sg2n, R); in the terminology of [13] and [16] a system of the form (3.4) is
called asymplectic differential systen®ymplectic differential systems are more
generally obtained using a symplectic trivialization along a solution of a (possibly
time-dependent) Hamiltonian system in an arbitrary symplectic manifold endowed
with a Lagrangian distribution, see [13, Section 3] for details.

Assume now thay is aperiodicgeodesic, i.ey (@) = y(b) andy (a) = y (b).
Choose the referentig);)!_, alongy in such a way thavi(a) = Vi(b),i =
1,...,n. We'll say, in this case, that the corresponding symplectic trivialization
(Yt)tela by is periodic

Recall that a closed curve : [a, b] — M is said to beorientation preserving
if for some (and hence for any) continuous referentla)_, alongy the bases
(Vi (@), and(V (b)){_; determine the same orientation@fyM = T, M. For
instance, ifM is orientable then any is orientation preserving. It is easy to prove
that if y is orientation preserving then there exists a smooth referepigl_,
alongy withVi(@) =V (b),i =1,...,n.

We define thenullity null(y) of y to be the dimension of the space of Jacobi
fieldsv alongy such thabv(a) = v(b) andv’(a) = v'(b). Obviously,

(3.6) nuli(y) = dim(Ker(cb(b) _ Id)).

Definition 3.1. If y is an orientation preserving periodic geodesic, define the
Maslov indexof y by

IMaslov(Y) = imasio(P),

where ® corresponds tgs by the choice of a periodic symplectic trivialization
(Y)te[a,b] @Nd Masio P) was introduced in Definition 2.5.

It is not difficult to show that yasi00(®) does not depend on the choice of the
periodic symplectic trivializationy )tefa,b)-
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The curve in S@@n, R) corresponding to the choice of a different periodic sym-
plectic trivialization is of the formb, = ¢t¢t¢;1, where

_(A(t) 0 )
"=\ o ap

and A is a loop in the general linear group Bf'. The loop¢ in Sp(2n, R) is
SO0 ivasio(y) is indeed well defined.

4. The index theorem

In this section we state and prove the main theorem of the paper. As in the previ-
ous section(M, g) denotes a semi-Riemannian manifold. KgtM) be the set of
closed curves : [a, b] — M of Sobolev clas#i?, i.e.,

Q(M) = {n:[a,b] 2= M :n(@ = nb)}.
We define thection functional f: Q(M) — R by

1 b
f(n) = Ef a(n'®, n'())dt.

It is well known that©2(M) has the structure of an infinite dimensional Hilbert
manifold and thatf is a smooth map; moreover, it is easy to see that the critical
points of f in (M) are the periodic geodesicsife (M) is a periodic geodesic,
the second variation of aty, or periodic index form(denoted by P¢"), is defined
on the spacd, Q(M) = {v vector field along of classH': v(a) = v(b)} and it
is given by

b
4.1) IPeT(0, o) = 1, (v, 10) = / [g(n’, ') + a(R(, 0)y', m)]dt.
a

From now on we assume th@¥l, g) is aLorentzian manifoldi.e., that the metric
tensorg has index 1. Recall that a Lorentzian manifold is cakgationaryif it
admits a timelike Killing vector field, i.e., a Killing vector fieMwith g(Y, Y) < O.

Now we have the following:

Theorem 4.1. Let (M, g) be a stationary Lorentzian manifold and Y a timelike
Killing vector field.
SetN = {n € Q(M) : g(', Y) = const. Then:
1. N is a Hilbert submanifold of2(M);
2. The critical points of the action functional f restricted Ad are precisely
the periodic geodesics;
3. Lety : [a, b] — M be an orientation preserving periodic geodesicy (b)
is not conjugate tg/ (a) alongy then the index of *'in T, \V is given by:

n_(l per|TVN) =1- iMaslov()/) - % nU”(]/).
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Proof. The proof of (1) and (2) is analogous to the proof of [9, Proposition 3.1,
Theorem 3.3]mutatis mutandis
To prove step (3), sé€ = T, \; a simple computation yields

K={oeT,QM):g,Y)—g,Y) = consi.
Define the spaces
K°={v e K:v(@ = v(b) =0}

and
P = {v Jacobi vector field along : v(a) = v(b)}.

Sincey (b) is not conjugate tg/(a) alongy, a Jacobi vector field along is
uniquely determined by its values at the endpoints. Therefore

K=K@?P.

Integration by parts on (4.1) shows th&t and P arel P*-orthogonal. Choose a
periodic symplectic trivializatioliy )ica ) alongy and defined as in (3.3). Using
(3.2) and integration by parts in (4.1), it is easy to see tRd8tp corresponds by
the isomorphism

P>so+— v eR"

to the symmetric bilinear form(® (b)) (see Definition 2.7). Hence

(4.2) n_(1P,) = n_(1P]0) + N (‘L’(Cb(b))).
Consider the curveg : [a — /2, a] — Sp(2n, R) given by:

coqt —a)ld, sin(t —a)ld,
Ao(t) = ( . )
—sin(t —a)ld, codt —a)ld,

Applying Corollary 2.11 to the concatenatiap- ¢, we have that
iMasiov(o- @)+, (Bo(ro- D))

—n, (@) -n, (f (/\o<a— ’;))) +5 dim(Ker(@(b) -10).

We now compute each one of the terms appearing in (4.3). Observe first that the
dimension of Ke¢®(b) — Id) is equal to the nullity ofs (recall (3.6)).
By Remark 2.6, we have

(4-4) iMaslov()»O . (b) = iMaslov(cI)) + iMaslov()\o) = iMaslov(cb) —n.

Sincet (Ag(a — 7 /2)) = 2ld,, we have

@9 o (c((a-3))) =0

(4.3)
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Settingl = B o (Ao - P), we obtain:

pig(B o (o @) = pio(lja—r/2.ate]) + LioCliate.n)s
for ¢ > 0 small enough. In [8], it is shown that
(4.6) Lo Cliaten) = N_(1Px0).

In order to computer ;(£]ja—x,2,a+]), We use Theorem 2.2. From (2.7) it follows
that¢’(a™) is positive definite; then

(4.7) n_(¢'@)) =0.

Using (3.5) and (2.7) it follows that (a™) is nondegenerate and
(4.8) n.(¢@hH)=n-1.

From (4.7) and (4.8), we have

(4.9) mLoCla—n/2ate) =N — 1.

From (4.6) and (4.9) we get
(4.10)  pi(Bo(ro-®) =n_(1P|0) +n—1
Observe that, using Lemma 2.8, we have the following equality:
Ny (z (@) = n—n_(z(®(b))) — dim(Ker(d(b) — Id))
=n—n_(z(®(b)) — null(y).
From (4.3), (4.4), (4.5), (4.10) and (4.11) we conclude that

(4.12) n- (T((D(b))) = 1 — iMasio(y) — N_(l per|’CO) - %I’IU”()/).

(4.11)

Substituting (4.12) in (4.2), we complete the proof of the theorernl
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