Isometry-invariant geodesics with Lipschitz obstacle¹

László Kozma, Alexandru Kristály and Csaba Varga

Abstract. Given a linear isometry $A_0: \mathbb{R}^n \to \mathbb{R}^n$ of finite order on \mathbb{R}^n , a general $\langle A_0 \rangle$ -invariant closed subset M of \mathbb{R}^n is considered with Lipschitz boundary. Under suitable topological restrictions the existence of A_0 -invariant geodesics of M is proven.

Keywords. Non-smooth critical point theory, geodesics, isometries.

MS classification. 58E05, 49J52.

1. Introduction

The existence of closed geodesics on Riemannian manifolds was studied by many authors, see W. Klingenberg ([11]) and the reference therein. For non-smooth sets, the problem was studied by A. Canino (for p-convex sets, see [1]) and M. Degiovanni and L. Morbini (for subsets in \mathbb{R}^n with Lipschitz boundary, see [7]). The existence of isometry-invariant geodesics on Riemannian manifold has been studied first by K. Grove in [8, 9, 10]. The purpose of this paper is to establish a similar existence result like that of K. Grove for isometry-invariant subsets of \mathbb{R}^n with Lipschitz boundary.

Now we formulate the main result of our paper. Here only some major notions are described. For more details, see the following sections.

Let $A_0: \mathbb{R}^n \to \mathbb{R}^n$ be a linear isometry on \mathbb{R}^n , $G = \langle A_0 \rangle$. Let $g: \mathbb{R}^n \to \mathbb{R}$ denote a G-invariant Lipschitz function, $M = \{x \in \mathbb{R}^n : g(x) \leq 0\}$, and let $\Lambda_{G(A_0)}(M)$ denote the subset of continuous curves γ in M with $A_0(\gamma(0)) = \gamma(1)$. The following topological hypotheses will be assumed to ensure the conclusions of the main theorem:

¹ The paper is in final form and will not be published elsewhere. Supported by OTKA-32068.

- (H_1) If the elements of $\operatorname{Fix}_M A_0$ are isolated, then $\operatorname{Fix}_M A_0$ is not homotopically equivalent with $\Lambda_{G(A_0)}(M)$.
- (H_2) The inclusion $i: \operatorname{Fix}_M A_0 \hookrightarrow \Lambda_{G(A_0)}(M)$ does not induce an isomorphism in the Alexander–Spanier cohomology, see [13].

The main theorem of the paper states:

Theorem 1.1. Let $A_0 : \mathbb{R}^n \to \mathbb{R}^n$ be a linear isometry of finite order and $g : \mathbb{R}^n \to \mathbb{R}$ a G-invariant locally Lipschitz map, where $G = \langle A_0 \rangle$. Suppose that

$$\forall x \in \mathbb{R}^n : g(x) = 0 \Rightarrow 0 \notin \partial g(x)$$

and let

$$M = \{x \in \mathbb{R}^n : g(x) < 0\}.$$

If M is compact and (H_1) or (H_2) holds, then there exists at least one non-trivial A_0 -invariant geodesic on M.

The proof is given in Section 5. This theorem generalizes both Degiovanni and Morbini's result ([7, Theorem 4.1]) on the existence of closed geodesic in the non-smooth case, and Grove's result ([9]) on the existence of isometry-invariant geodesics of Riemannian spaces.

2. Preliminaries

First we recall some definitions and results from the papers of J.-N. Corvellec ([5]), M. Degiovanni and M. Marzocchi ([6]), M. Degiovanni and L. Morbini ([7]). Let (M, d) be a metric space, and $B(u; \delta)$ the open ball of center u and radius δ . First we define the weak slope of a continuous function.

Definition 2.1. Let $f: M \to \mathbb{R}$ be a continuous function. For every $u \in M$ we denote by |df|(u) the supremum of the numbers $\sigma \in [0, \infty[$ such that there exist a number $\delta > 0$ and a continuous map $\mathcal{H}: B(u; \delta) \times [0, \delta] \to M$ such that for every $v \in B(u; \delta)$ and $t \in [0, \delta]$ the following assertions hold

(1)
$$d(\mathcal{H}(v,t),v) \le t;$$

(2)
$$f(\mathcal{H}(v,t)) \le f(v) - \sigma t.$$

The extended real number |df|(u) is called the *weak slope* of the function f in the point u.

We consider now a lower semi-continuous function $f: M \to \mathbb{R} \cup \{+\infty\}$. We set

$$\mathcal{D}(f) = \left\{ u \in M \middle| f(u) < +\infty \right\};$$

$$\bar{f}^b = \left\{ u \in M \middle| f(u) \le b \right\};$$

$$f^b = \left\{ u \in M \middle| f(u) < b \right\};$$

$$\operatorname{epi}(f) = \left\{ (u, \alpha) \in M \times \mathbb{R} \middle| f(u) \le \alpha \right\}.$$

The set epi(f) will be endowed with the metric

$$d_e((u,\lambda),(v,\mu)) = (d^2(u,v) + (\lambda - \mu)^2)^{\frac{1}{2}},$$

denoted (for simplicity) again by d. We define the function \mathcal{G}_f : $\operatorname{epi}(f) \to \mathbb{R}$ by $\mathcal{G}_f(u,\alpha) = \alpha$. The function \mathcal{G}_f is Lipschitz continuous with constant 1. Through \mathcal{G}_f the notion of the weak slope can be extended to lower semi-continuous functions.

Definition 2.2. Let $f: M \to \mathbb{R} \cup \{\infty\}$ be a lower semi-continuous function and $u \in \mathcal{D}(f)$ a fixed point. We set

$$|df|(u) = \begin{cases} \frac{|d\mathcal{G}_f|(u, f(u))}{\sqrt{1 - |d\mathcal{G}_f|^2(u, f(u))}}, & |d\mathcal{G}_f|(u, f(u)) < 1\\ +\infty, & |d\mathcal{G}_f|(u, f(u)) = 1. \end{cases}$$

In the sequel we shall use the following result from the paper of M. Degiovanni and L. Morbini.

Proposition 2.3 ([7], Prop. 2.3). Let $(u, \lambda) \in \operatorname{epi}(f)$. We assume that there exist $\delta, c, \sigma > 0$ and a continuous map $\mathcal{H} : \{v \in B(u; \delta) \mid f(v) < \lambda + \delta\} \times [0, \delta] \to M$ such that for any $v \in B(u; \delta)$ with $f(v) < \lambda + \delta$ and any $t \in [0, \delta]$ we have

$$d(\mathcal{H}(v,t),v) \leq ct,$$

$$f(\mathcal{H}(v,t)) \leq f(v) - \sigma t.$$

Then we have

$$|d\mathcal{G}_f|(u,\lambda) \ge \frac{\sigma}{\sqrt{\sigma^2 + c^2}}.$$

In particular, if $\lambda = f(u)$, then we have

$$|df|(u) \ge \frac{\sigma}{c}.$$

Remark 2.4. If M is a \mathcal{C}^1 -Finsler manifold and $f: M \to \mathbb{R}$ is a \mathcal{C}^1 -function, then |df|(u) = ||df(u)||, cf. [6].

Definition 2.5. We say that $u \in \mathcal{D}(f)$ is a *critical point of* f if |df|(u) = 0. We say that $c \in \mathbb{R}$ is a *critical value* of the function f if there exists a critical point $u \in \mathcal{D}(f)$ with f(u) = c.

For every
$$c \in \mathbb{R}$$
 we set $K(f)_c = \{u \in \mathcal{D}(f) : |df|(u) = 0, f(u) = c\}.$

Definition 2.6. Let $c \in \mathbb{R}$ be a fixed number. We say that the function f satisfies the *Palais–Smale condition at level* c (shortly $(PS)_c$) if every sequence $(u_n) \subset M$ such that $f(u_n) \to c$ and $|df|(u_n) \to 0$ contains a convergent subsequence in M.

3. Geodesics under isometry action

We will work with geodesics introduced in the paper [7]. For this we need to fix some notions and notations.

Let M be a closed subset of \mathbb{R}^n . Each $\gamma \in W^{1,2}(a,b;\mathbb{R}^n)$ will be identified with its continuous representative $\tilde{\gamma}:[a,b]\to\mathbb{R}^n$. We will denote by $\|\cdot\|_{1,2}$ and $\|\cdot\|_p$ the usual norms in $W^{1,2}(a,b;\mathbb{R}^n)$ and $L^p(a,b;\mathbb{R}^n)$ with $1\leq p\leq \infty$. We consider

$$W^{1,2}(a,b;M) = \left\{ \gamma \in W^{1,2}(a,b;\mathbb{R}^n) : \gamma(s) \in M \quad \forall s \in [a,b] \right\}$$

and let the functional $E_{a,b}:W^{1,2}(a,b;M)\to\mathbb{R}$ by

$$E_{a,b}(\gamma) := \frac{1}{2} \int_a^b |\gamma'(s)|^2 ds.$$

Definition 3.1 ([7], Def. 3.1). Let $a, b \in \mathbb{R}$, a < b. A curve $\gamma \in W^{1,2}(a,b;M)$ is *energy-stationary* if it is not possible to find $\delta, c, \sigma > 0$ and a map

$$\mathcal{H}: \{ \eta \in W^{1,2}(a,b;M) : \|\eta - \gamma\|_{1,2} < \delta \} \times [0,\delta] \longrightarrow W^{1,2}(a,b;M)$$

such that

- a) \mathcal{H} is continuous from the topology of $L^2(a,b;\mathbb{R}^n) \times \mathbb{R}$ to that of $L^2(a,b;\mathbb{R}^n)$;
- b) for every $\eta \in W^{1,2}(a,b;M)$ with $\|\eta \gamma\|_{1,2} < \delta$ and $t \in [0,\delta]$, we have

$$(\mathcal{H}(\eta, t) - \eta) \in W_0^{1,2}(a, b; \mathbb{R}^n);$$
$$\|\mathcal{H}(\eta, t) - \eta\|_2 \le ct;$$
$$E_{a,b}(\mathcal{H}(\eta, t)) < E_{a,b}(\eta) - \sigma t.$$

Remark 3.2. It is easy to show that, if the curve $\gamma \in W^{1,2}(a,b;M)$ is energy-stationary, then for every $[\alpha, \beta] \subseteq [a, b]$ the restriction $\gamma|_{[\alpha,\beta]}$ is energy-stationary too, see [7, Proposition 3.2].

Definition 3.3 ([7], Def. 3.3). Let I be an interval in \mathbb{R} with int $(I) \neq \emptyset$. A continuous map $\gamma: I \to M$ is a *geodesic on* M, if every $s \in \text{int}(I)$ admits a neighborhood [a, b] in I such that $\gamma|_{[a,b]} \in W^{1,2}(a,b;M)$ and $\gamma|_{[a,b]}$ is energy-stationary.

In [7, Theorem 3.5], it is shown that if γ is a geodesic, then it is Lipschitzian and $|\gamma'|$ is almost everywhere equal to a constant.

In the sequel, let $A_0: \mathbb{R}^n \to \mathbb{R}^n$ be a linear isometry, i.e., A_0 is a linear map and $\langle A_0 x, A_0 y \rangle = \langle x, y \rangle$, for every $x, y \in \mathbb{R}^n$, where $\langle \cdot, \cdot \rangle$ is the Euclidean inner product. Moreover, let us suppose that $A_0(M) = M$.

Definition 3.4. An A_0 -invariant geodesic on M is a geodesic $\gamma: \mathbb{R} \to M$ such that

$$A_0(\gamma(s)) = \gamma(s+1), \quad \forall s \in \mathbb{R}.$$

The above curve is non-trivial if this does not reduce to a point. Otherwise, this point will be a fixed point of A_0 .

Let $X_{A_0} = \{ \gamma \in W^{1,2}(0, 1; M) \mid A_0(\gamma(0)) = \gamma(1) \}$. We define the functional $f_{A_0}: L^2(0, 1; \mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\}$ by

$$f_{A_0}(\gamma) = \begin{cases} E_{0,1}(\gamma), & \text{if } \gamma \in X_{A_0} \\ +\infty, & \text{otherwise.} \end{cases}$$

Naturally, the functional f_{A_0} is lower semi-continuous and is A_0 -invariant, i.e., $f_{A_0}(A_0\gamma) = f_{A_0}(\gamma) = f_{A_0}(A_0^{-1}\gamma)$, for every $\gamma \in L^2(0,1,\mathbb{R}^n)$. First, we prove the following

Theorem 3.5. If $\gamma \in X_{A_0}$ is a critical point of f_{A_0} , then γ is a geodesic on M.

Proof. By contradiction, let $s_0 \in (0, 1)$ such that for every neighborhood [a, b] in [0, 1], the curve $\gamma|_{[a,b]}$ is not energy-stationary on [a,b]. Let [a,b] := [0,1], $\delta, c, \zeta > 0$ and let \mathcal{H} be a continuous function as in Definition 3.1. There exists $\delta' \in]0, \delta]$ such that for all $\eta \in X_{A_0}$

$$\|\eta - \gamma\|_2 < \delta'$$
 and $f_{A_0}(\eta) < f_{A_0}(\gamma) + \delta' \Longrightarrow \|\eta - \gamma\|_{1,2} < \delta$.

For every $\eta \in X_{A_0}$ with $d_2(\eta, \gamma) = \|\eta - \gamma\|_2 < \delta'$ and $f_{A_0}(\eta) < f_{A_0}(\gamma) + \delta'$ we have

$$d_2(\mathcal{H}(\eta,t),\eta) \leq ct,$$

$$f_{A_0}(\mathcal{H}(\eta,t)) \leq f_{A_0}(\eta) - \zeta t.$$

Applying Proposition 2.3 for f_{A_0} and $L^2(0, 1, \mathbb{R}^n)$, it follows that γ is not a critical point for f_{A_0} , which is a contradiction.

Theorem 3.6. For every $\gamma \in X_{A_0}$ we have the relation

$$|df_{A_0}|(A_0\gamma) = |df_{A_0}|(\gamma).$$

Proof. We prove that $|d\mathcal{G}_{f_{A_0}}|(\gamma, f_{A_0}(\gamma)) = |d\mathcal{G}_{f_{A_0}}|(A_0\gamma, f_{A_0}(\gamma))$. First, we prove that $|d\mathcal{G}_{f_{A_0}}|(\gamma, f_{A_0}(\gamma)) \leq |d\mathcal{G}_{f_{A_0}}|(A_0\gamma, f_{A_0}(\gamma))$. If $|d\mathcal{G}_{f_{A_0}}|(\gamma, f_{A_0}(\gamma)) = 0$, then the relation is obvious. Otherwise, let $0 < \zeta < 1$

 $|d\mathcal{G}_{f_{A_0}}|(\gamma, f_{A_0}(\gamma)), \ \delta > 0$ and the continuous function

$$\mathcal{H}: \left(B\left(\left(\gamma, f_{A_0}(\gamma)\right); \delta\right) \cap \operatorname{epi}(f_{A_0})\right) \times [0, \delta] \to \operatorname{epi}(f_{A_0})$$

such that the following assertions hold

(3)
$$d\left(\mathcal{H}((\beta,\tau),t),(\beta,\tau)\right) \leq t,$$
$$\mathcal{G}_{f_{A_0}}\left(\mathcal{H}((\beta,\tau),t)\right) \leq \mathcal{G}_{f_{A_0}}(\beta,\tau) - \zeta t,$$

for all $(\beta, \tau) \in (B((\gamma, f_{A_0}(\gamma)); \delta) \cap \operatorname{epi}(f_{A_0})), t \in [0, \delta].$

We consider the function $\widetilde{\mathcal{H}} = (\widetilde{\mathcal{H}}_1, \widetilde{\mathcal{H}}_2) : (B((A_0\gamma, f_{A_0}(\gamma)); \delta) \cap \operatorname{epi}(f_{A_0})) \times$ $[0, \delta] \rightarrow \operatorname{epi}(f_{A_0})$ defined by

$$\widetilde{\mathcal{H}}\left((\beta,\tau),t\right) = \left(\left(A_0\mathcal{H}_1(A_0^{-1}\beta,\tau),t\right),\mathcal{H}_2\left((A_0^{-1}\beta,\tau),t\right)\right).$$

We have that the function $\widetilde{\mathcal{H}}$ is well defined and is continuous. We have, for every $(\beta, \tau) \in (B((A_0\gamma, f_{A_0}(\gamma)); \delta) \cap \operatorname{epi}(f_{A_0})) \text{ and } t \in [0, \delta]$

$$d\left(\widetilde{\mathcal{H}}\left((\beta,\tau),t\right),(\beta,\tau)\right)$$

$$=d\left(A_{0}\mathcal{H}_{1}\left((A_{0}^{-1}\beta,\tau),t\right),\mathcal{H}_{2}\left((A_{0}^{-1}\beta,\tau),t\right),(\beta,\tau)\right)$$

$$=d\left(\left(\mathcal{H}_{1}\left((A_{0}^{-1}\beta,\tau),t\right),\mathcal{H}_{2}\left((A_{0}^{-1}\beta,\tau),t\right)\right),(A_{0}^{-1}\beta,\tau)\right)$$

$$=d\left(\mathcal{H}\left((A_{0}^{-1}\beta,\tau),t\right),(A_{0}^{-1}\beta,\tau)\right) \leq t,$$

and

(5)
$$\mathcal{G}_{f_{A_0}}\left(\widetilde{\mathcal{H}}\left((\beta,\tau),t\right)\right) = \widetilde{\mathcal{H}}_2\left((\beta,\tau),t\right) = \mathcal{H}_2\left((A_0^{-1}\beta,\tau),t\right) \\ \leq \mathcal{G}_{f_{A_0}}(A_0^{-1}\beta,\tau) - \zeta t = \mathcal{G}_{f_{A_0}}(\beta,\tau) - \zeta t.$$

It follows from (4) and (5) that $|d\mathcal{G}_{f_{A_0}}|(A_0\gamma,f_{A_0}(\gamma))\geq \zeta$, from which we get $|d\mathcal{G}_{f_{A_0}}|(A_0\gamma, f_{A_0}(\gamma)) \ge |d\mathcal{G}_{f_{A_0}}|(\gamma, f_{A_0}(\gamma)).$ The converse inequality is proved in the same way. Therefore we have proved

that

$$|d\mathcal{G}_{f_{A_0}}|\big(\gamma, f_{A_0}(\gamma)\big) = |d\mathcal{G}_{f_{A_0}}|\big(A_0\gamma, f_{A_0}(\gamma)\big).$$

Since $\gamma \in \mathcal{D}(f_{A_0})$, from Definition 2.2 we obtain the desired relation.

We introduce the following notation

$$A_0^n = \begin{cases} A_0 \circ A_0 \circ \dots \circ A_0, & n \in \mathbb{Z}_+ \\ \mathrm{id}_{\mathbb{R}^n}, & n = 0 \\ A_0^{-1} \circ A_0^{-1} \circ \dots \circ A_0^{-1}, & n \in \mathbb{Z}_- \end{cases}$$

where $A_0 \circ A_0 \circ \cdots \circ A_0$ and $A_0^{-1} \circ A_0^{-1} \circ \cdots \circ A_0^{-1}$ denote the compositions of |n|-times.

Remark 3.7. If $\gamma \in X_{A_0}$, then $|df_{A_0}|(A_0^n\gamma) = |df_{A_0}|(\gamma)$ for every $n \in \mathbb{Z}$. Indeed, in a similar way as in Theorem 3.6, it is possible to prove that

$$|df_{A_0}|(A_0^{-1}\gamma) = |df_{A_0}|(\gamma).$$

The rest follows by induction.

The following result comes from the above remark and Theorem 3.5.

Corollary 3.8. If $\gamma \in X_{A_0}$ is a critical point of f_{A_0} , then $A_0^n \gamma$ is a geodesic on *M* for every $n \in \mathbb{Z}$.

Moreover, we need the following result to join the geodesic (segments) and to obtain A_0 -invariant geodesics on M.

Proposition 3.9. If $\gamma \in X_{A_0}$ is a critical point of f_{A_0} , then

(6)
$$\widehat{\gamma}(s) = \begin{cases} \gamma(s + \frac{1}{2}), & 0 \le s \le \frac{1}{2} \\ A_0 \gamma(s - \frac{1}{2}), & \frac{1}{2} \le s \le 1 \end{cases}$$

is a geodesic on M.

Proof. We observe that $\widehat{\gamma}$ is continuous and $A_0(\widehat{\gamma}(0)) = \widehat{\gamma}(1)$. Moreover, $\widehat{\gamma} \in X_{A_0}$. Using the fact that A_0 is linear isometry and the definition of f_{A_0} , we have $f_{A_0}(\widehat{\gamma}) = f_{A_0}(\gamma) < \infty$. Since γ and $A_0\gamma$ are geodesics on M, we obtain that for all point $s \in (0,1) \setminus \{\frac{1}{2}\}$ there exists a neighborhood $[a_s,b_s]$ of s in [0,1] such that $\widehat{\gamma}|_{[a_s,b_s]}$ is energy-stationary. By contradiction, we assume that for $\frac{1}{2}$ there exist no neighborhood [a,b] in [0,1] such that the curve $\widehat{\gamma}|_{[a,b]}$ is energy-stationary. We set [a,b] := [0,1]. Let δ , c, $\zeta > 0$ and a continuous function $\widehat{\mathcal{H}}$ as in Definition 3.1.

We define the function

$$\mathcal{H}: \{ \eta \in W^{1,2}(0,1,M) : \|\eta - \gamma\|_{1,2} < \delta \} \times [0,\delta] \to W^{1,2}(0,1,M)$$

by

(7)
$$\mathcal{H}(\eta, t)(s) = \begin{cases} A_0^{-1} \left(\widehat{\mathcal{H}}(\tilde{\eta}, t)(s + \frac{1}{2}) \right), & 0 \le s \le \frac{1}{2} \\ \widehat{\mathcal{H}}(\tilde{\eta}, t)(s - \frac{1}{2}), & \frac{1}{2} \le s \le 1 \end{cases}$$

where

(8)
$$\tilde{\eta}(s) = \begin{cases} \eta(s + \frac{1}{2}), & 0 \le s \le \frac{1}{2} \\ A_0 \eta(s - \frac{1}{2}), & \frac{1}{2} \le s \le 1. \end{cases}$$

Obviously, $\tilde{\eta} \in X_{A_0}$. The function \mathcal{H} is well defined and is continuous. Moreover, $\mathcal{H}(\eta, t) \in X_{A_0}$. For all $\eta \in X_{A_0}$ with $\|\eta - \gamma\|_{1,2} < \delta$ we have $\|\tilde{\eta} - \widehat{\gamma}\|_{1,2} < \delta$. From (7) and (8) we have

$$d_2(\mathcal{H}(\eta, t), \eta) = \|\mathcal{H}(\eta, t) - \eta\|_2 = \|\widehat{\mathcal{H}}(\tilde{\eta}, t) - \tilde{\eta}\|_2 \le ct;$$

$$f_{A_0}(\mathcal{H}(\eta, t)) \le f_{A_0}(\eta) - \zeta t.$$

Applying again the machinery from Theorem 3.5 and using Proposition 2.3, we obtain that γ is not a critical point of f_{A_0} , which is in contradiction with the assumption. \square

Remark 3.10. Let $\gamma \in X_{A_0}$ be a geodesic on M. We define the curve $\tilde{\gamma} : \mathbb{R} \to M$ by $\tilde{\gamma}(t) = A_0^{[t]}(\gamma(\{t\}))$, where [t] is the integer part of $t \in \mathbb{R}$, and $\{t\} = t - [t]$. We observe that for every $s \in \mathbb{R}$

$$A_0\big(\tilde{\gamma}(s)\big) = A_0^{1+[s]}\Big(\gamma\big(\{s\}\big)\Big) = A_0^{[s+1]}\Big(\gamma\big(\{s+1\}\big)\Big) = \tilde{\gamma}(s+1),$$

i.e., $\tilde{\gamma}$ is A_0 -invariant geodesic on M. Therefore, if we can guarantee that $\gamma \in X_{A_0}$ is a (non-trivial) curve which is a critical point of f_{A_0} , the above construction can be applied for constructing A_0 -invariant geodesics on M.

Remark 3.11. We denote by $\operatorname{Fix}_M A_0$ the fixed points of the isometry A_0 on M. We observe that $\overline{\mathcal{G}}_{f_{A_0}}^0$ is homeomorphic to $\operatorname{Fix}_M A_0$. Indeed, let

$$(\gamma, \xi) \in \overline{\mathcal{G}}_{f_{A_0}}^0 = \{ (\gamma, \xi) \in \text{epi}(f_{A_0}) : \xi \le 0 \},$$

therefore $f_{A_0}(\gamma) \le \xi \le 0$. From this, we get that $\gamma \in X_{A_0}$ and $|\gamma'(s)| = 0$ almost everywhere, therefore $\gamma(s) = x_0 \in M$. Since $A_0(\gamma(0)) = \gamma(1)$ it follows that $x_0 \in \operatorname{Fix}_M A_0$.

4. Topological framework and Lipschitz obstacle

Let A_0 be a linear isometry of finite order (i.e., there exists $k \in \mathbb{N}$ such that $A_0^k = \mathrm{id}_{\mathbb{R}^n}$) and let $G = \langle A_0 \rangle$ be the group generated by A_0 . Let $g : \mathbb{R}^n \to \mathbb{R}$ be a G-invariant Lipschitz function, i.e., $g(Ax) = g(x), \forall x \in \mathbb{R}^n, A \in G$. Let

$$M = \{x \in \mathbb{R}^n : g(x) \le 0\}.$$

Of course, M is G-invariant, i.e., AM = M, for every $A \in G$. We suppose that

$$\forall x \in \mathbb{R}^n : g(x) = 0 \Rightarrow 0 \notin \partial g(x),$$

where ∂g is the Clarke's subdifferential, [3]. According to the paper of Krawcewicz and Marzantowicz ([12]), ∂g is G-equivariant, i.e., $\partial g(Ax) = A\partial g(x)$ for every $A \in G$. Moreover, the lower semi-continuous function $\lambda(x) = \{|\alpha| : \alpha \in \partial g(x)\}$ is also G-invariant. Using the paper of Chang ([2]), there exists a locally Lipschitz map

$$v: \{x \in \mathbb{R}^n \mid 0 \notin \partial g(x)\} \to \mathbb{R}^n.$$

such that

$$(9) 0 \notin \partial g(x) \Rightarrow ||v(x)|| \le 2\lambda(x);$$

(10)
$$0 \notin \partial g(x), \ \alpha \in \partial g(x) \Rightarrow \langle \alpha, v(x) \rangle \geq \lambda(x)^2.$$

Moreover, in our case, the above map can be chosen in *G*-equivariant way. More precisely, let

$$\widehat{v}(x) = \frac{1}{k} \sum_{A \in G} A^{-1} v(Ax).$$

Of course, $\widehat{v}(Ax) = A\widehat{v}(x)$, $\forall A \in G, x \in \mathbb{R}^n$, i.e., \widehat{v} is G-equivariant and relations (9) and (10) hold for \widehat{v} (instead of v). We can choose a G-invariant neighborhood \mathcal{O} of $\{x \in \mathbb{R}^n : 0 \in \partial g(x)\}$ and a G-invariant locally Lipschitz functional $\theta : \mathbb{R}^n \to [0, 1]$ such that

$$x \in \mathcal{O} \Rightarrow \theta(x) = 0$$
,

$$g(x) = 0 \Rightarrow \theta(x) = 1.$$

We define

$$w(x) = \begin{cases} \theta(x) \frac{\widehat{v}(x)}{|\widehat{v}(x)|}, & \text{if } 0 \notin \partial g(x) \\ 0, & \text{if } x \in \mathcal{O} \end{cases}$$

w is well defined, locally Lipschitz and G-equivariant, i.e., w(Ax) = Aw(x), for every $x \in \mathbb{R}^n$ and $A \in G$.

Moreover, we have

$$g(x) = 0 \Rightarrow |w(x)| = 1,$$

 $g(x) = 0, \alpha \in \partial g(x) \Rightarrow \langle \alpha, w(x) \rangle \ge \frac{1}{2} \lambda(x).$

Definition 4.1. A subset L of \mathbb{R}^n is *Lipschitz neighborhood retract* if there exist an open neighborhood U_L of L in \mathbb{R}^n and a locally Lipschitz retraction $r:U_L\to L$.

Theorem 4.2. The set M is Lipschitz neighborhood retract. Moreover, the retraction can be constructed such that $r \circ A_0 = A_0 \circ r$ in the neighborhood U_M of M and U_M is G-invariant.

Proof. We consider the following Cauchy problem:

$$\begin{cases} \frac{\partial \eta_G}{\partial t}(x,t) = -w(\eta_G(x,t)), \\ \eta_G(x,0) = x. \end{cases}$$

Of course, $\eta_G(\cdot, t)$ is G-homeomorphism, i.e., homeomorphism and $\eta_G(Ax, t) = A\eta_G(x, t)$, $\forall A \in G$, $x \in \mathbb{R}^n$, $t \in \mathbb{R}$. Therefore $U_M = \{\eta_G(x, -1) : g(x) < 0\}$ is open and is G-invariant. Further, the proof is proceeded in the same way as in ([7, Theorem 6.4]), if we replace η by η_G , obtaining a retraction r from U_M onto M which commutes with A_0 . \square

Let Y be a subset of \mathbb{R}^n which is G-invariant. We consider the

$$\Lambda_{G(A_0)}(Y) = \left\{ \gamma \in \mathcal{C}\big([0,1];Y\big) : A_0\big(\gamma(0)\big) = \gamma(1) \right\}$$

which is endowed with the sup-metric. If $A_0 = \mathrm{id}$, then $\Lambda_{G(A_0)}(Y) = \Lambda(Y)$ is the well-known free loop space of Y.

Let U_M be the open neighborhood of M (from Theorem 4.2) and let

$$\Lambda^1_{G(A_0)}(U_M) := \left\{ \gamma \in W^{1,2}(0,1;U_M) : A_0(\gamma(0)) = \gamma(1) \right\}$$

be endowed with the $W^{1,2}$ -metric. Then there exists a continuous mapping

$$\mathcal{K}_{A_0}: \Lambda_{G(A_0)}(U_M) \times [0,1] \to \Lambda_{G(A_0)}(U_M),$$

which satisfies the assertions from [7, Lemma 5.2] replacing $\Lambda(U)$ by $\Lambda_{GA_0}(U_M)$ and $\Lambda^1(U)$ by $\Lambda^1_{GA_0}(U_M)$.

The next result is the equivariant form of [7, Theorem 5.3].

Theorem 4.3. The map $\pi : \operatorname{epi}(f_{A_0}) \to \Lambda_{G(A_0)}(M)$ defined by $\pi(\gamma, \lambda) = \gamma$ is a homotopy equivalence.

Proof. Let $r: U_M \to M$ be as in Theorem 4.2 and $\mathcal{K}_{A_0}: \Lambda_{G(A_0)}(U_M) \times [0, 1] \to \Lambda_{G(A_0)}(U_M)$ as above. Let $\gamma \in \Lambda_{G(A_0)}(M)$. Then $\gamma_r = r \circ \mathcal{K}_{A_0}(\gamma, 1)$ is also in $\Lambda_{G(A_0)}(M)$ since γ_r is continuous and

$$A_0(\gamma_r(0)) = \gamma_r(1).$$

Further, the proof is similar to that of [7, Theorem 5.3]. \Box

Theorem 4.4. For every $(\gamma, \lambda) \in epi(f_{A_0})$ with $\lambda > f_{A_0}(\gamma)$ we have

$$|d\mathcal{G}_{f_{A_0}}|(\gamma,\lambda)=1.$$

Proof. We can follow the proof of the [7, Theorem 6.4] with the corresponding modification, i.e., instead of f, X, ν we use f_{A_0} , X_{A_0} , w respectively. \square

5. The existence of A_0 -invariant geodesics

Now, we are in the position to prove the main result of this paper:

Proof of Theorem 1.1. The set $\operatorname{epi}(f_{A_0})$ endowed with the metric $L^2 \times \mathbb{R}$ is complete. Moreover, since M is compact, $(\mathcal{G}_{f_{A_0}})^b$ is compact for any $b \in \mathbb{R}$, therefore $\mathcal{G}_{f_{A_0}}$ satisfies the $(PS)_c$ condition, for any $c \in \mathbb{R}$. Suppose that $\mathcal{G}_{f_{A_0}}$ has no critical point $(\gamma, \xi) \in \operatorname{epi}(f_{A_0})$ with

$$a = 0 < \mathcal{G}_{f_{A_0}}(\gamma, \xi) \le b = +\infty.$$

The case of (H_1) . From [5, Theorem 2.10], it follows that $K(\mathcal{G}_{f_{A_0}})_0$ is a weak deformation retract of $\operatorname{epi}(f_{A_0})$. Since $K(\mathcal{G}_{f_{A_0}})_0$ is homeomorphic to $\operatorname{Fix}_M A_0$ and $\operatorname{epi}(f_{A_0})$ is homotopically equivalent with $\mathcal{G}_{f_{A_0}}$, this is in contradiction with the assumption.

The case of (H_2) . From [7, Theorem 2.7], it follows that the inclusion

$$i:(\overline{\mathcal{G}_{f_{A_0}}})^0\hookrightarrow \operatorname{epi}(f_{A_0})$$

induces an isomorphism between the Alexander–Spanier cohomology groups of the above sets, which is a contradiction with the assumption.

Therefore, in the both cases, there exists $(\gamma,\lambda) \in \operatorname{epi}(f_{A_0})$ with $\lambda > 0$ and $|d\mathcal{G}_{f_{A_0}}|(\gamma,\lambda) = 0$. From Theorem 4.4 it follows that $\lambda = f_{A_0}(\gamma)$. Therefore, $\gamma \in X_{A_0}$ and $|df_{A_0}|(\gamma) = 0$. So, γ is a critical point for f_{A_0} with $0 < f_{A_0} < +\infty$. Applying the machinery described in Remark 3.10, we obtain that the curve $\tilde{\gamma} : \mathbb{R} \to M$ defined by

$$\tilde{\gamma}(t) = A_0^{[t]} (\gamma(\{t\}))$$

is a non-trivial A_0 -invariant geodesic on M. The proof is complete.

Remark 5.1. In fact, since A_0 is of finite order, the above A_0 -invariant geodesic on M is a closed geodesic on M. Therefore, if we want to guarantee the existence of a closed geodesic on M (in this way), it is enough to establish the existence of an A_0 -invariant geodesic.

Finally, we give some examples.

Example 5.2. If $A_0 = \mathrm{id}_{\mathbb{R}^n}$, then we obtain the notion of the closed geodesics, introduced in [7]. Of course, $\mathrm{Fix}_M A_0 = M$ and $\Lambda_{G(A_0)}(M) = \Lambda(M)$ is the free loop space. Moreover, if M is defined as above and we suppose that it is compact, simply connected and non-contractible in itself, then, according to a result of Vigué-Poirrier and Sullivan [14], the hypothesis (H_2) holds. Therefore, there exists a nontrivial closed geodesics on M.

Example 5.3. If $\operatorname{Fix}_M A_0 = \emptyset$, then both hypotheses hold, therefore there exists at least one A_0 -invariant geodesic.

Remark 5.4. The existence of the closed geodesics, in the sense of [7], is a difficult problem. If the set M is "symmetric" enough and if we can construct a linear isometry, which leaves M invariant, the existence of a closed geodesic is simpler, as shown in the next example.

Example 5.5. Let

$$M = \left\{ x \in \mathbb{R}^3 : \sum_{i=1}^3 x_i^2 \le 1 \le \sum_{i=1}^3 |x_i| \right\}.$$

Let $A_0(x_1, x_2, x_3) = (x_1, -x_2, -x_3)$. The fixed points of A_0 are

$$Fix_M A_0 = \{(1,0,0), (-1,0,0)\}.$$

Of course, $A_0^2 = \text{id}$ and $\Lambda_{G(A_0)}M$ is 0-connected, therefore the two sets above are not homotopically equivalent, i.e., the hypothesis (H_1) holds. Therefore, there exists an A_0 -invariant geodesic on M which is at same time a closed geodesic.

References

- [1] A. Canino, Existence of a closed geodesic on *p*-convex sets, *Ann. Inst. H. Poincaré Anal.*, *Non Linéare* 5 (1988) 501–518.
- [2] K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, *J. Math. Anal. Appl.* 80 (1981) 102–129.
- [3] F. H. Clarke, *Optimization and Nonsmooth Analysis*, Canadian Mathematical Society Series of Monographs and Advanced Texts (Wiley, New York, 1983).
- [4] J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, *Topol. Methods in Nonlinear Anal.* 1 (1993) 151–171.
- [5] J.-N. Corvellec, Morse theory for continuous functionals, J. Math. Anal. Appl. 196 (1995) 1050–1072.
- [6] M. Degiovanni and M. Marzocchi, A critical point theory for non-smooth functionals, *Ann. Mat. Pura Appl.* 167 (1994) (4) 73–100.

- [7] M. Degiovanni and L. Morbini, Closed geodesics with Lipschitz obstacle, *J. Math. Anal. Appl.* 233 (1999) 767–789.
- [8] K. Grove, Condition (C) for the energy integral on certain path-space and applications to the theory of geodesics, *J. Diff. Geometry* 8 (1973) 207–223.
- [9] K. Grove, Isometry-invariant geodesics, *Topology* 13 (1974) 281–292.
- [10] K. Grove, Involution-invariant geodesics, Math. Scand. 36 (1975) 97–108.
- [11] W. Klingenberg, Lectures on Closed Geodesics (Springer, Berlin, 1978).
- [12] W. Krawcewicz and W. Marzantowicz, Some remarks on the Lusternik–Schnirelman method for non-differential functionals invariant with respect to a finite group action, *Rocky Mountain J. Math.* 20 (1990) 1041–1049.
- [13] E. H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966).
- [14] M. Vigué-Poirrier and D. Sullivan, The homology theory of the closed geodesic problem, *J. Diff. Geom.* 11 (1976) 633–644.

László Kozma
Institute of Mathematics and Informatics
University of Debrecen
Debrecen
Hungary
E-mail: kozma@math.klte.hu

Alexandru Kristály Faculty of Mathematics and Informatics Babes-Bolyai University Cluj-Napoca Romania

E-mail: akristal@math.ubbcluj.ro

Csaba Varga Faculty of Mathematics and Informatics Babes-Bolyai University Cluj-Napoca Romania

E-mail: csvarga@math.ubbcluj.ro