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Isometry-invariant geodesics with Lipschitz
obstacle

Laszb Kozma, Alexandru Krigtly and Csaba Varga

Abstract. Given a linear isometrydg : R" — R" of finite order onR",
a generak Ag)-invariant closed subséil of R" is considered with Lipschitz
boundary. Under suitable topological restrictions the existendgdfivariant
geodesics oM is proven.
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1. Introduction

The existence of closed geodesics on Riemannian manifolds was studied by
many authors, see W. Klingenberg ([11]) and the reference therein. For non-smooth
sets, the problem was studied by A. Canino (feconvex sets, see [1]) and M. De-
giovanni and L. Morbini (for subsets IR" with Lipschitz boundary, see [7]). The
existence of isometry-invariant geodesics on Riemannian manifold has been stud-
ied first by K. Grove in [8,9, 10]. The purpose of this paper is to establish a similar
existence result like that of K. Grove for isometry-invariant subse®afith Lip-
schitz boundary.

Now we formulate the main result of our paper. Here only some major notions
are described. For more details, see the following sections.

Let Ap : R" — R" be a linear isometry ofR", G = (Ag). Letg:R" — R
denote aG-invariant Lipschitz functionM = {x € R" : g(x) < 0}, and let
Ac(ap) (M) denote the subset of continuous curyeist M with Ag(y (0)) = ¥ (1).

The following topological hypotheses will be assumed to ensure the conclusions of
the main theorem:

1The paper is in final form and will not be published elsewhere.
Supported by OTKA-32068.
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(Hy) If the elements of Fiy Ag are isolated, then FjxAg is not homotopically
equivalent withAg(a,) (M).

(H2) The inclusion : Fixpy Ao — Agay) (M) does not induce an isomorphism
in the Alexander—Spanier cohomology, see [13].

The main theorem of the paper states:

Theorem 1.1. Let Ay : R" — R" be a linear isometry of finite order and
g: R" — R a G-invariant locally Lipschitz map, where & (Ag). Suppose that

VX e R":g(x) =0= 0¢ ag(x)
and let
M= {x ¢ R": g(x) < 0}.

If M is compact and'H;) or (Hy) holds, then there exists at least one non-trivial
Ao-invariant geodesic on M.

The proof is given in Section 5. This theorem generalizes both Degiovanni and
Morbini’s result ([7, Theorem 4.1]) on the existence of closed geodesic in the non-
-smooth case, and Grove’s result ([9]) on the existence of isometry-invariant geode-
sics of Riemannian spaces.

2. Preliminaries

First we recall some definitions and results from the papers of J.-N. Corvellec
([5]), M. Degiovanni and M. Marzocchi ([6]), M. Degiovanni and L. Morbini ([7]).
Let (M, d) be a metric space, ari8lu; §) the open ball of centar and radius.
First we define the weak slope of a continuous function.

Definition 2.1. Let f : M — R be a continuous function. For eveuye M we
denote byld f|(u) the supremum of the numberse [0, oo[ such that there exist a
numbers > 0 and a continuous ma : B(u; §) x [0, §] — M such that for every
v € B(u; §) andt € [0, §] the following assertions hold

1) d(H, 0, v) <t;

) f(Hw, ) < f(v) —ot.

The extended real numbgtf|(u) is called theweak slopef the functionf in the
pointu.

We consider now a lower semi-continuous functionM — RU{+o0}. We set
D(f) = {ue M|f() < +oo};

' ={ueM|fu) <b};

f°={ueM|fu) <b};

epi(f) = {(u, @) e M x R| f(u) < a}.
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The set eqif) will be endowed with the metric

de((U, 2), (v, 1)) = (d?(u, v) + (A — /L)Z)%,

denoted (for simplicity) again bgl. We define the functiog; : epi(f) — R by

G (u, ) = a. The functionG; is Lipschitz continuous with constant 1. Through

G+ the notion of the weak slope can be extended to lower semi-continuous func-
tions.

Definition 2.2. Let f : M — R U {00} be a lower semi-continuous function
andu € D(f) afixed point. We set

1dG+I(u, f(w)
df|(u) = \/1— 1dG12(u, f(u)

+00, ldG¢l(u, f(w) = 1.

, 1dGel(u, f(w) <1

In the sequel we shall use the following result from the paper of M. Degiovanni
and L. Morbini.

Proposition 2.3([7], Prop. 2.3). Let(u, 1) € epi( f). We assume that there exist
8,c,0 > 0andacontinuous maf : {ve B(u;8) | f(v) <A+8}x[0,8] > M
such that for anyw € B(u; §) with f(v) < A + § and any te [0, §] we have

d(H(v,t),v) <ct,
f(H(v, t)) < f(v) —ot.

Then we have

[dG¢[(u, 1) >

o
v o2 + c? '
In particular, if A = f (u), then we have
dfjw > 2.
c
Remark 2.4. If M is aC*-Finsler manifold andf : M — R is aC*-function,
then|d f|(u) = |d f (u)]|, cf. [6].

Definition 2.5. We say thau € D(f) is acritical point of f if |df|(u) = 0.
We say that € R is acritical valueof the functionf if there exists a critical point
ue D(f)with f(u) =c.

For everyc € Rwe setK (f)c = {u e D(f) : |[df|(u) =0, f(u) =c}.

Definition 2.6. Letc € R be a fixed number. We say that the functibsatisfies
the Palais—Smale condition at level(shortly (P S).) if every sequencéu,) c M
such thatf (u,) — cand|df|(uy) — O contains a convergent subsequenchklin
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3. Geodesics under isometry action

We will work with geodesics introduced in the paper [7]. For this we need to fix
some notions and notations.

Let M be a closed subset &". Eachy € W%?(a,b;R") will be identified with
its continuous representatiye: [a, b] — R". We will denote by] - |12 and]| - ||,
the usual norms iv2(a,b;R") andL P(a, b; R") with 1 < p < oo. We consider

Wh2@,b;M) = {y e W@, b; R 1 y(s) e M Vs e [a, b]}
and let the functionak, p : W'?(a,b; M) — R by

l b / 2
Ean(y) :=5f '(9)2ds
a

Definition 3.1 ([7], Def. 3.1). Leta,b e R, a < b. Acurvey € W?(a,b; M)
is energy-stationaryf it is not possible to finds, c, o > 0 and a map

H:{n e W@, b;M) : In—ylli2 < 8} x[0,8] — Wh2(a,b; M)

such that
a) ‘H is continuous from the topology &f*(a,b;R™) x R to that ofL?(a,b;R");
b) for everyn € Wh2(a,b; M) with ||y — y|l1.2 < § andt € [0, §], we have

(H(n, t) — 1) € WH(a,b;R™);
|7, 0 =7, <ct;
Eab(H(1,1)) < Eap(n) — ot.

Remark 3.2. It is easy to show that, if the curye € W2(a,b; M) is energy-
-stationary, then for everfyr, ] C [a, b] the restrictiony|(, ) is energy-stationary
too, see [7, Proposition 3.2].

Definition 3.3 ([7], Def. 3.3). Letl be an interval inR with int(l) # @. A
continuous maps . | — M is ageodesic on M if every s € int(l) admits
a neighborhooda, b] in | such thaty|an; € W2(a,b; M) and y|[a is energy-
-stationary.

In [7, Theorem 3.5], it is shown thatf is a geodesic, then it is Lipschitzian and
|y’| is almost everywhere equal to a constant.

In the sequel, letrg : R" — R" be a linear isometry, i.eAq is a linear map
and (AgX, Agy) = (X, y), for everyx, y € R", where(-,-) is the Euclidean inner
product. Moreover, let us suppose tg{M) = M.

Definition 3.4. An Ag-invariant geodesic on Nk a geodesig : R — M such
that

Ao(y(s) =y(s+1, VseR.

The above curve is non-trivial if this does not reduce to a point. Otherwise, this
point will be a fixed point ofA,.
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Let Xa, = {y € W2(0,1; M) | Ag(¥(0)) = y(1)}. We define the functional
fa, : L2(0, 1; R") — R U {400} by

Eo1(y), ify e Xa,

f =
%) Ltoo, otherwise

Naturally, the functionalfa, is lower semi-continuous and ip-invariant, i.e.,
fag(Aoy) = fag(y) = fa(Agly), for everyy e L?(0, 1, RM). First, we prove
the following

Theorem 3.5. If y € Xa, is a critical point of fa,, theny is a geodesic on M.

Proof. By contradiction, lety € (0, 1) such that for every neighborhogd, b]
in [0, 1], the curvey|a is not energy-stationary ofa, b]. Let [a, b] := [0, 1],
8,¢,¢ > 0 and letH be a continuous function as in Definition 3.1. There exists
8’ €]0, 6] such that for all) € Xa,

ln—yllo<d8 and fa(n) < fa(y)+8 = lln—yli2 <3$.

For everyn € Xa, With dx(n, y) = Iln — yll2 < 8" and fa,(n) < fa,(y) + &
we have

do(H(n, ), 1) <ct,
fag(H(, 1) < fa () — ¢t.

Applying Proposition 2.3 forf 5,andL?(0, 1, RM), it follows thaty is not a critical
point for fa,, which is a contradiction. [

Theorem 3.6. For everyy e X, we have the relation
d fagl (Agy) = [dfal(¥).

Proof. We prove thatldngol(y, fa(y)) = |dng0|(Aoy, fa,(v)). First, we

prove thatdGy, |(v, fa,(¥)) = [dG1, [(Aoy, Ta(¥)).
If |dng0|()/, fa,(¥)) = 0, then the relation is obvious. Otherwise, lek0; <
|dngO|(y, fa,(¥)), 8 > 0 and the continuous function

M (B((y, Fap(1): a) ﬂepi(fA0)> % [0, 8] — epi( fa,)
such that the following assertions hold

d(H((B, 1), 1), (B, 1) <t,

Gip (H((B. T), 1) < G (B, T) — L,

forall (8, 1) € (B((y, on(V))i 8) eriﬁ(vaO)), t €[0,4].
We consider the functiofl = (H1, H2) : (B((Agy, fa,(¥)); 8) Nepi(fay)) x
[0, 8] — epi( fa,) defined by

(8. 0),1) = ((AHa(AGB, 1), 1), Ha((Ag*B, ), 1)).
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We have that the functiof is well defined and is continuous. We have, for every
(B, ) € (B((Agy. Tar(¥)); 8) Nepi(fa,)) andt € [0, 4]

d(f((6.0.1), (6. 0))

= d( AoH1((Ag 8, D), 1), Ha( (A6, ), 1), (B,7))

(4)
— d((Hl((Aolﬁ, ), 1), H2((A B, 1), t)), (A8, r))
= d(H((AB.D.1). (AR, D)) <t

and

g In(fED.) =Fa((p.0.0) = Hal(A 6. 00.0)

< Gt (A8, 1) — Lt =Gy, (B, T) — Lt

It follows from (4) and (5) thatdg+, [(Aoy, fa,(¥)) = ¢, from which we get
G [(Aoy. Tag(y)) = 1dG1, [(y. Fay (1))

The converse inequality is proved in the same way. Therefore we have proved
that

Gt (v Fac (1)) = 1dG1, [(Aoy, Fa ().
Sincey € D(fa,), from Definition 2.2 we obtain the desired relation[]

We introduce the following notation

Ago Ago---0 Ag, nez,
A8= iana n=0
AaloAalo-qual, nez._

whereAgo Ago--- o Agand Ayt o Agto--- o Ayt denote the compositions of
|n|-times.

Remark 3.7. If y € Xa,, then|dfa|(Ajy) = |dfa,l(y) for everyn e Z.
Indeed, in a similar way as in Theorem 3.6, it is possible to prove that

|dfal(Ag™y) = 1dfal(r).
The rest follows by induction.
The following result comes from the above remark and Theorem 3.5.

Corollary 3.8. If y € Xa, is a critical point of f,, then Ay is a geodesic on
M for every ne Z.

Moreover, we need the following result to join the geodesic (segments) and to
obtain Ap-invariant geodesics oNl.
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Proposition 3.9. If y € Xj, is a critical point of fa,, then
y(s+3), 0

Aoy(s—3), 3

is a geodesic on M.

1
=3

© P = { :

S
S

IANIA
IA |

Proof. We observe thaf is continuous andiy(7(0)) = ¥ (1). Moreover,y €
Xao- Using the fact that, is linear isometry and the definition dfy,, we have
fa,(¥) = fa,(y) < o0o. Sincey and Agy are geodesics oNl, we obtain that for
all points € (0,1) \ {%} there exists a neighborhogds, bs] of s in [0, 1] such
thaty s by IS €nergy-stationary. By contradiction, we assume tha% fivere exist
no neighborhooda, b] in [0, 1] such that the curvg|(a 1 is energy-stationary. We
set[a,b] := [0, 1]. Let é,c,¢ > O and a continuous functio as in Defini-
tion 3.1.

We define the function

H:{n e WH2(0,1, M) : I — ylliz2 < 8} x [0, 8] — WH2(0, 1, M)

by
Ach(ﬁ(ﬁ,t)(er %)), 0<s< %
(7) Hm0@={A~
HG, (s = 3), l<s<1
where
- ns+3)., 0<s=<j
8 =
” " {AW@—%% 1<s=<1

Obviously,n € Xa,. The function is well defined and is continuous. Moreover,
H(n,t) € Xa,- Forally € Xa, with [|[n — y[l12 < § we have||7 — ¥]l12 < 8.
From (7) and (8) we have

da(H(, 0, n) = |[Ho, O =1, = |[HG, O =7, <ct;

fag(H(, 1) < fa () — ¢t.

Applying again the machinery from Theorem 3.5 and using Proposition 2.3, we
obtain thaty is not a critical point off,,, which is in contradiction with the as-
sumption. [

Remark 3.10. Lety € Xa, be a geodesic oM. We define the curvg : R —
M by 7 (t) = All(y ({t})), where[t] is the integer part of € R, and{t} = t — [t].
We observe that for evelye R

Ao (®) = ATy (1)) = A5 (v (s + 1)) = 7 s+ D),

i.e.,y is Ag-invariant geodesic oM. Therefore, if we can guarantee that Xa,
is a (non—trivial) curve which is a critical point df,, the above construction can
be applied for constructingy-invariant geodesics oll.
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Remark 3.11. We denote by Fiy Ag the fixed points of the isometrf on M.
We observe tha@?AO is homeomorphic to Fig Ag. Indeed, let

(v.6) € G4, = {(r, &) e epi(fa) 1 £ <0},

thereforefa,(y) < & < 0. From this, we get thgt € X, and|y’(s)| = 0 almost
everywhere, thereforg(s) = X € M. Since Ag(y (0)) = y (1) it follows that
Xo € Fixy Ag.

4. Topological framework and Lipschitz obstacle

Let Ag be a linear isometry of finite order (i.e., there exikt€ N such that
A'(‘J = idgn) and letG = (Ag) be the group generated . Letg : R" — R be a
G-invariant Lipschitz function, i.eg(Ax) = g(x),Vx € R", A€ G. Let

M = {x € R": g(x) < 0}.
Of course M is G-invariant, i.e.,AM = M, for everyA € G. We suppose that
Vx e R":g(x) =0= 0¢ ag(x),

wheredg is the Clarke’s subdifferential, [3]. According to the paper of Krawcewicz
and Marzantowicz ([12])9g is G-equivariant, i.e.gg(Ax) = Adg(x) for every
A € G. Moreover, the lower semi-continuous functidx) = {|a| : @ € 3g(X)}
is alsoG-invariant. Using the paper of Chang ([2]), there exists a locally Lipschitz
map

v:{xeR"|0¢3g(x)} - R",

such that

9) 0¢ dgx) = ||v(x)| < 2n(x);

(10) 0¢ 3g(x), & € 3g(X) = (o, V(X)) = A ()%

Moreover, in our case, the above map can be chos&aquivariant way. More
precisely, let

(X)) = i Z A (AX).

AeG

Of coursep(Ax) = Av(x), YA € G, x € R", i.e.,vis G-equivariant and relations
(9) and (10) hold fo (instead ofv). We can choose @-invariant neighborhoo®
of {x € R": 0 € ag(x)} and aG-invariant locally Lipschitz functionad : R" —
[0, 1] such that

xeO =6k =0,
gx) =0=6(x) = 1.
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We define
v(x) .
W) = e(x)m, if 0 ¢ ag(x)
0, if xeO

w is well defined, locally Lipschitz anG-equivariant, i.e.w(AX) = Aw(X), for
everyx € R"andA € G.
Moreover, we have

gx) =0= [w(x)| =1,
g(x) =0, a € 3g(X) = (o, w(X)) > 1 (x).

Definition 4.1. A subsetl of R" is Lipschitz neighborhood retradtthere exist
an open neighborhodd, of L in R" and a locally Lipschitz retractian: U, — L.

Theorem 4.2. The set M is Lipschitz neighborhood retract. Moreover, the re-
traction can be constructed such that rAg = Ag o r in the neighborhood §} of
M and Uy is G-invariant.

Proof. We consider the following Cauchy problem:

0
%(x,o = —w(ns(x, 1)),

ne(x,0) = X.

Of course ns (-, t) is G-homeomorphism, i.e., homeomorphism apgd Ax,t) =
Anc(x,1), VA € G, x € R", t € R. ThereforeUy = {nc(x,—1) : g(xX) < 0} is
open and iss-invariant. Further, the proof is proceeded in the same way as in ([7,
Theorem 6.4]), if we replace by ng, obtaining a retraction from Uy, onto M
which commutes withd,. O

LetY be a subset dR" which is G-invariant. We consider the
Asi (V) = {7 €C(10.1:Y) : Aoy (0) =y (0]

which is endowed with the sup-metric. Ay = id, thenAga,)(Y) = A(Y) is the
well-known free loop space of.
Let Uy be the open neighborhood bf (from Theorem 4.2) and let

Al Un) 1= |y € W20, 1 U © Ao(y(0) = 7 (D)
be endowed with th&v1-2-metric. Then there exists a continuous mapping

Ko : Aciag(Um) x [0,1] = Agag(Um),

which satisfies the assertions from [7, Lemma 5.2] repladind ) by Aga,(Um)
andA'(U) by Ag  (Uw).
The next result is the equivariant form of [7, Theorem 5.3].
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Theorem 4.3. The mapr : epi(fa,) = Ay (M) defined byr (y, 1) =y is
a homotopy equivalence.

Proof. Letr : Uy — M be asin Theorem 4.2 arkly, : Agiay(Um) %[0, 1] —
Acay(Um) as above. Ley € Aga)(M). Theny, =1 o Kpy(y, 1) is also in
Acag (M) sincey; is continuous and

Ao(1(0) = % (D).
Further, the proof is similar to that of [7, Theorem 5.3]
Theorem 4.4. For every(y, A) € epi(fa,) with A > fa,(y) we have
[dG 1 1y, A) = 1.

Proof. We can follow the proof of the [7, Theorem 6.4] with the corresponding
modification, i.e., instead of, X, v we usefa,, Xa,, w respectively. [J

5. The existence ofAg-invariant geodesics

Now, we are in the position to prove the main result of this paper:

Proof of Theorem 1.1.The set epif 5,) endowed with the metrit? x R is com-
plete. Moreover, sinc#l is compact;(ngo)b is compact for anp € R, therefore
Gty satisfies th&P S); condition, for anyc € R. Suppose thaﬁfAO has no critical

point(y, &) € epi( fa,) with
a=0<Ggs, (y.§) <b=+o0.

The case ofHy). From [5, Theorem 2.10], it follows thd€ (ngO)o is a weak
deformation retract of epfa,). SinceK(ngO)o is homeomorphic to FigAg and
epi(fa,) is homotopically equivalent witls, , this is in contradiction with the
assumption.

The case ofH,). From [7, Theorem 2.7], it follows that the inclusion

i (QTAO)O — epi(fa,)

induces an isomorphism between the Alexander—Spanier cohomology groups of
the above sets, which is a contradiction with the assumption.

Therefore, in the both cases, there exigts.) € epi(fa,) with A > 0 and
|dngO|(y, A) = 0. From Theorem 4.4 it follows that = fa,(y). Therefore,y e
Xa, and|dfa,|(y) = 0. So, y is a critical point for fa, with 0 < fa, < +oo.
Applying the machinery described in Remark 3.10, we obtain that the gurve
R — M defined by

7 = Al (yth)

is a non-trivial Ag-invariant geodesic oM. The proof is complete. [
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Remark 5.1. In fact, sinceAy is of finite order, the abovéy-invariant geodesic
on M is a closed geodesic avi. Therefore, if we want to guarantee the existence
of a closed geodesic oMl (in this way), it is enough to establish the existence of
an Ag-invariant geodesic.

Finally, we give some examples.

Example 5.2. If Ag = idgn, then we obtain the notion of the closed geodesics,
introduced in [7]. Of course, FixAp = M and Aga,)(M) = A(M) is the free
loop space. Moreover, 1 is defined as above and we suppose that it is compact,
simply connected and non-contractible in itself, then, according to a result c¢Vigu
Poirrier and Sullivan [14], the hypothesisl,) holds. Therefore, there exists a non-
trivial closed geodesics ol

Example 5.3. If Fixy Ag = @, then both hypotheses hold, therefore there exists
at least one)g-invariant geodesic.

Remark 5.4. The existence of the closed geodesics, in the sense of [7], is a
difficult problem. If the setM is “symmetric” enough and if we can construct a
linear isometry, which leaveM invariant, the existence of a closed geodesic is
simpler, as shown in the next example.

Example 5.5. Let

3 3
M:{xeR3:in2_1§Z|Xil}-
i i=1

=1
Let Ag(X1, X2, X3) = (X1, —X2, —X3). The fixed points ofA, are

Of course,A? = id and AgayM is O-connected, therefore the two sets above
are not homotopically equivalent, i.e., the hypothésls) holds. Therefore, there
exists anAg-invariant geodesic oM which is at same time a closed geodesic.
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