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Isometry-invariant geodesics with Lipschitz
obstacle1

Lászĺo Kozma, Alexandru Krist́aly and Csaba Varga

Abstract. Given a linear isometryA0 : R
n → R

n of finite order onR
n,

a general〈A0〉-invariant closed subsetM of R
n is considered with Lipschitz

boundary. Under suitable topological restrictions the existence ofA0-invariant
geodesics ofM is proven.
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1. Introduction

The existence of closed geodesics on Riemannian manifolds was studied by
many authors, see W. Klingenberg ([11]) and the reference therein. For non-smooth
sets, the problem was studied by A. Canino (forp-convex sets, see [1]) and M. De-
giovanni and L. Morbini (for subsets inRn with Lipschitz boundary, see [7]). The
existence of isometry-invariant geodesics on Riemannian manifold has been stud-
ied first by K. Grove in [8,9,10]. The purpose of this paper is to establish a similar
existence result like that of K. Grove for isometry-invariant subsets ofR

n with Lip-
schitz boundary.

Now we formulate the main result of our paper. Here only some major notions
are described. For more details, see the following sections.

Let A0 : R
n → R

n be a linear isometry onRn, G = 〈A0〉. Let g: R
n → R

denote aG-invariant Lipschitz function,M = {x ∈ R
n : g(x) ≤ 0}, and let

�G(A0)(M) denote the subset of continuous curvesγ in M with A0(γ (0)) = γ (1).
The following topological hypotheses will be assumed to ensure the conclusions of
the main theorem:

1The paper is in final form and will not be published elsewhere.
Supported by OTKA-32068.
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(H1) If the elements of FixM A0 are isolated, then FixM A0 is not homotopically
equivalent with�G(A0)(M).

(H2) The inclusioni : FixM A0 ↪→ �G(A0)(M) does not induce an isomorphism
in the Alexander–Spanier cohomology, see [13].

The main theorem of the paper states:

Theorem 1.1. Let A0 : R
n → R

n be a linear isometry of finite order and
g : R

n → R a G-invariant locally Lipschitz map, where G= 〈A0〉. Suppose that

∀x ∈ R
n : g(x) = 0 ⇒ 0 /∈ ∂g(x)

and let

M = {x ∈ R
n : g(x) ≤ 0}.

If M is compact and(H1) or (H2) holds, then there exists at least one non-trivial
A0-invariant geodesic on M.

The proof is given in Section 5. This theorem generalizes both Degiovanni and
Morbini’s result ([7, Theorem 4.1]) on the existence of closed geodesic in the non-
-smooth case, and Grove’s result ([9]) on the existence of isometry-invariant geode-
sics of Riemannian spaces.

2. Preliminaries

First we recall some definitions and results from the papers of J.-N. Corvellec
([5]), M. Degiovanni and M. Marzocchi ([6]), M. Degiovanni and L. Morbini ([7]).

Let (M, d) be a metric space, andB(u; δ) the open ball of centeru and radiusδ.
First we define the weak slope of a continuous function.

Definition 2.1. Let f : M → R be a continuous function. For everyu ∈ M we
denote by|d f |(u) the supremum of the numbersσ ∈ [0, ∞[ such that there exist a
numberδ > 0 and a continuous mapH : B(u; δ)× [0, δ] → M such that for every
v ∈ B(u; δ) andt ∈ [0, δ] the following assertions hold

(1) d
(
H(v, t), v

) ≤ t;

(2) f
(
H(v, t)

) ≤ f (v) − σ t.

The extended real number|d f |(u) is called theweak slopeof the function f in the
pointu.

We consider now a lower semi-continuous functionf : M → R∪{+∞}. We set

D( f ) = {
u ∈ M

∣∣ f (u) < +∞};
f

b = {
u ∈ M

∣∣ f (u) ≤ b
};

f b = {
u ∈ M

∣∣ f (u) < b
};

epi( f ) = {
(u, α) ∈ M × R

∣∣ f (u) ≤ α
}
.
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The set epi( f ) will be endowed with the metric

de

(
(u, λ), (v, µ)

) = (
d2(u, v) + (λ − µ)2

) 1
2 ,

denoted (for simplicity) again byd. We define the functionG f : epi( f ) → R by
G f (u, α) = α. The functionG f is Lipschitz continuous with constant 1. Through
G f the notion of the weak slope can be extended to lower semi-continuous func-
tions.

Definition 2.2. Let f : M → R ∪ {∞} be a lower semi-continuous function
andu ∈ D( f ) a fixed point. We set

|d f |(u) =


|dG f |

(
u, f (u)

)√
1 − |dG f |2

(
u, f (u)

) , |dG f |
(
u, f (u)

)
< 1

+∞, |dG f |
(
u, f (u)

) = 1.

In the sequel we shall use the following result from the paper of M. Degiovanni
and L. Morbini.

Proposition 2.3([7], Prop. 2.3). Let(u, λ) ∈ epi( f ). We assume that there exist
δ, c, σ > 0 and a continuous mapH : {v ∈ B(u; δ) | f (v) < λ+ δ}× [0, δ] → M
such that for anyv ∈ B(u; δ) with f (v) < λ + δ and any t∈ [0, δ] we have

d
(
H(v, t), v

) ≤ ct,

f
(
H(v, t)

) ≤ f (v) − σ t.

Then we have

|dG f |(u, λ) ≥ σ√
σ 2 + c2

.

In particular, if λ = f (u), then we have

|d f |(u) ≥ σ

c
.

Remark 2.4. If M is aC1-Finsler manifold andf : M → R is aC1-function,
then|d f |(u) = ‖d f (u)‖, cf. [6].

Definition 2.5. We say thatu ∈ D( f ) is a critical point of f if |d f |(u) = 0.
We say thatc ∈ R is acritical valueof the function f if there exists a critical point
u ∈ D( f ) with f (u) = c.

For everyc ∈ R we setK ( f )c = {u ∈ D( f ) : |d f |(u) = 0, f (u) = c}.
Definition 2.6. Let c ∈ R be a fixed number. We say that the functionf satisfies

thePalais–Smale condition at level c(shortly(PS)c) if every sequence(un) ⊂ M
such thatf (un) → c and|d f |(un) → 0 contains a convergent subsequence inM .
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3. Geodesics under isometry action

We will work with geodesics introduced in the paper [7]. For this we need to fix
some notions and notations.

Let M be a closed subset ofR
n. Eachγ ∈ W1,2(a,b;Rn) will be identified with

its continuous representativẽγγ : [a, b] → R
n. We will denote by‖ · ‖1,2 and‖ · ‖p

the usual norms inW1,2(a,b;Rn) andL p(a, b; R
n) with 1 ≤ p ≤ ∞. We consider

W1,2(a,b;M) = {
γ ∈ W1,2(a, b; R

n) : γ (s) ∈ M ∀s ∈ [a, b]
}

and let the functionalEa,b : W1,2(a,b;M) → R by

Ea,b(γ ) := 1

2

∫ b

a
|γ ′(s)|2 ds.

Definition 3.1 ([7], Def. 3.1). Leta, b ∈ R, a < b. A curveγ ∈ W1,2(a,b;M)

is energy-stationaryif it is not possible to findδ, c, σ > 0 and a map

H :
{
η ∈ W1,2(a,b;M) : ‖η−γ ‖1,2 < δ

}×[0, δ] −→ W1,2(a,b;M)

such that
a) H is continuous from the topology ofL2(a,b;Rn)×R to that ofL2(a,b;Rn);
b) for everyη ∈ W1,2(a,b;M) with ‖η − γ ‖1,2 < δ andt ∈ [0, δ], we have(

H(η, t) − η
) ∈ W1,2

0 (a,b;Rn);∥∥H(η, t) − η
∥∥

2 ≤ ct;
Ea,b

(
H(η, t)

) ≤ Ea,b(η) − σ t.

Remark 3.2. It is easy to show that, if the curveγ ∈ W1,2(a,b;M) is energy-
-stationary, then for every[α, β] ⊆ [a, b] the restrictionγ|[α,β] is energy-stationary
too, see [7, Proposition 3.2].

Definition 3.3 ([7], Def. 3.3). Let I be an interval inR with int (I ) �= ∅. A
continuous mapγ : I → M is a geodesic on M, if every s ∈ int (I ) admits
a neighborhood[a, b] in I such thatγ|[a,b] ∈ W1,2(a,b;M) andγ|[a,b] is energy-
-stationary.

In [7, Theorem 3.5], it is shown that ifγ is a geodesic, then it is Lipschitzian and
|γ ′| is almost everywhere equal to a constant.

In the sequel, letA0 : R
n → R

n be a linear isometry, i.e.,A0 is a linear map
and〈A0x, A0y〉 = 〈x, y〉, for everyx, y ∈ R

n, where〈·,·〉 is the Euclidean inner
product. Moreover, let us suppose thatA0(M) = M .

Definition 3.4. An A0-invariant geodesic on Mis a geodesicγ : R → M such
that

A0(γ (s)) = γ (s + 1), ∀s ∈ R.

The above curve is non-trivial if this does not reduce to a point. Otherwise, this
point will be a fixed point ofA0.
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Let XA0 = {γ ∈ W1,2(0, 1; M) | A0(γ (0)) = γ (1)}. We define the functional
fA0 : L2(0, 1; R

n) → R ∪ {+∞} by

fA0(γ ) =
{

E0,1(γ ), if γ ∈ XA0

+∞, otherwise.

Naturally, the functionalfA0 is lower semi-continuous and isA0-invariant, i.e.,
fA0(A0γ ) = fA0(γ ) = fA0(A−1

0 γ ), for everyγ ∈ L2(0, 1, R
n). First, we prove

the following

Theorem 3.5. If γ ∈ XA0 is a critical point of fA0, thenγ is a geodesic on M.

Proof. By contradiction, lets0 ∈ (0, 1) such that for every neighborhood[a, b]
in [0, 1], the curveγ|[a,b] is not energy-stationary on[a, b]. Let [a, b] := [0, 1],
δ, c, ζ > 0 and letH be a continuous function as in Definition 3.1. There exists
δ′ ∈]0, δ] such that for allη ∈ XA0

‖η − γ ‖2 < δ′ and fA0(η) < fA0(γ ) + δ′ �⇒ ‖η − γ ‖1,2 < δ.

For everyη ∈ XA0 with d2(η, γ ) = ‖η − γ ‖2 < δ′ and fA0(η) < fA0(γ ) + δ′

we have

d2

(
H(η, t), η

) ≤ ct,

fA0

(
H(η, t)

) ≤ fA0(η) − ζ t.

Applying Proposition 2.3 forfA0 andL2(0, 1, R
n), it follows thatγ is not a critical

point for fA0, which is a contradiction. �

Theorem 3.6. For everyγ ∈ XA0 we have the relation

|d fA0|(A0γ ) = |d fA0|(γ ).

Proof. We prove that|dG fA0
|(γ, fA0(γ )) = |dG fA0

|(A0γ, fA0(γ )). First, we
prove that|dG fA0

|(γ, fA0(γ )) ≤ |dG fA0
|(A0γ, fA0(γ )).

If |dG fA0
|(γ, fA0(γ )) = 0, then the relation is obvious. Otherwise, let 0< ζ <

|dG fA0
|(γ, fA0(γ )), δ > 0 and the continuous function

H :

(
B

((
γ, fA0(γ )

); δ

)
∩ epi( fA0)

)
× [0, δ] → epi( fA0)

such that the following assertions hold

(3)
d
(
H((β, τ ), t), (β, τ )

) ≤ t,

G fA0

(
H((β, τ ), t)

) ≤ G fA0
(β, τ ) − ζ t,

for all (β, τ ) ∈ (B((γ, fA0(γ )); δ) ∩ epi( fA0)), t ∈ [0,δ].
We consider the functioñHH = (H̃H1, H̃H2) : (B((A0γ, fA0(γ )); δ) ∩ epi( fA0)) ×

[0, δ] → epi( fA0) defined by

H̃H
(
(β, τ ), t

) =
((

A0H1(A−1
0 β, τ), t

)
,H2

(
(A−1

0 β, τ), t
))

.
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We have that the functioñHH is well defined and is continuous. We have, for every
(β, τ ) ∈ (B((A0γ, fA0(γ )); δ) ∩ epi( fA0)) andt ∈ [0, δ]

(4)

d
(
H̃H

(
(β, τ ), t

)
, (β, τ )

)
= d

(
A0H1

(
(A−1

0 β, τ), t
)
,H2

(
(A−1

0 β, τ), t
)
, (β, τ )

)
= d

((
H1

(
(A−1

0 β, τ), t
)
,H2

(
(A−1

0 β, τ), t
))

, (A−1
0 β, τ)

)
= d

(
H

(
(A−1

0 β, τ), t
)
, (A−1

0 β, τ)
)

≤ t,

and

(5)
G fA0

(
H̃H

(
(β, τ ), t

)) = H̃H2

(
(β, τ ), t

) = H2

(
(A−1

0 β, τ), t
)

≤ G fA0
(A−1

0 β, τ) − ζ t = G fA0
(β, τ ) − ζ t.

It follows from (4) and (5) that|dG fA0
|(A0γ, fA0(γ )) ≥ ζ , from which we get

|dG fA0
|(A0γ, fA0(γ )) ≥ |dG fA0

|(γ, fA0(γ )).

The converse inequality is proved in the same way. Therefore we have proved
that

|dG fA0
|(γ, fA0(γ )

) = |dG fA0
|(A0γ, fA0(γ )

)
.

Sinceγ ∈ D( fA0), from Definition 2.2 we obtain the desired relation.�

We introduce the following notation

An
0 =


A0 ◦ A0 ◦ · · · ◦ A0, n ∈ Z+
idR

n, n = 0

A−1
0 ◦ A−1

0 ◦ · · · ◦ A−1
0 , n ∈ Z−

whereA0 ◦ A0 ◦ · · · ◦ A0 and A−1
0 ◦ A−1

0 ◦ · · · ◦ A−1
0 denote the compositions of

|n|-times.

Remark 3.7. If γ ∈ XA0, then |d fA0|(An
0γ ) = |d fA0|(γ ) for everyn ∈ Z.

Indeed, in a similar way as in Theorem 3.6, it is possible to prove that

|d fA0|(A−1
0 γ ) = |d fA0|(γ ).

The rest follows by induction.

The following result comes from the above remark and Theorem 3.5.

Corollary 3.8. If γ ∈ XA0 is a critical point of fA0, then An
0γ is a geodesic on

M for every n∈ Z.

Moreover, we need the following result to join the geodesic (segments) and to
obtainA0-invariant geodesics onM .
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Proposition 3.9. If γ ∈ XA0 is a critical point of fA0, then

(6) γ̂ (s) =
{
γ (s + 1

2
), 0 ≤ s ≤ 1

2

A0γ (s − 1
2
), 1

2 ≤ s ≤ 1

is a geodesic on M.

Proof. We observe that̂γ is continuous andA0(γ̂ (0)) = γ̂ (1). Moreover,γ̂ ∈
XA0. Using the fact thatA0 is linear isometry and the definition offA0, we have
fA0(γ̂ ) = fA0(γ ) < ∞. Sinceγ and A0γ are geodesics onM , we obtain that for
all point s ∈ (0, 1) \ {1

2} there exists a neighborhood[as, bs] of s in [0, 1] such
thatγ̂ |[as,bs] is energy-stationary. By contradiction, we assume that for1

2 there exist
no neighborhood[a, b] in [0, 1] such that the curvêγ |[a,b] is energy-stationary. We
set [a, b] := [0, 1]. Let δ, c, ζ > 0 and a continuous function̂H as in Defini-
tion 3.1.

We define the function

H :
{
η ∈ W1,2(0, 1, M) : ‖η − γ ‖1,2 < δ

} × [0, δ] → W1,2(0, 1, M)

by

(7) H(η, t)(s) =
{

A−1
0

(
Ĥ(η̃η, t)(s + 1

2
)
)
, 0 ≤ s ≤ 1

2

Ĥ(η̃η, t)(s − 1
2
), 1

2 ≤ s ≤ 1

where

(8) η̃η(s) =
{
η(s + 1

2
), 0 ≤ s ≤ 1

2

A0η(s − 1
2
), 1

2 ≤ s ≤ 1.

Obviously,η̃η ∈ XA0. The functionH is well defined and is continuous. Moreover,
H(η, t) ∈ XA0. For all η ∈ XA0 with ‖η − γ ‖1,2 < δ we have‖η̃η − γ̂ ‖1,2 < δ.
From (7) and (8) we have

d2

(
H(η, t), η

) =
∥∥H(η, t) − η

∥∥
2 =

∥∥Ĥ(η̃η, t) − η̃η
∥∥

2 ≤ ct;
fA0

(
H(η, t)

) ≤ fA0(η) − ζ t.

Applying again the machinery from Theorem 3.5 and using Proposition 2.3, we
obtain thatγ is not a critical point of fA0, which is in contradiction with the as-
sumption. �

Remark 3.10. Let γ ∈ XA0 be a geodesic onM. We define the curvẽγγ : R →
M by γ̃γ (t) = A[t ]

0 (γ ({t})), where[t ] is the integer part oft ∈ R, and{t} = t − [t ].
We observe that for everys ∈ R

A0

(
γ̃γ (s)

) = A1+[s]
0

(
γ
({s})) = A[s+1]

0

(
γ
({s + 1})) = γ̃γ (s + 1),

i.e., γ̃γ is A0-invariant geodesic onM . Therefore, if we can guarantee thatγ ∈ XA0

is a (non–trivial) curve which is a critical point offA0, the above construction can
be applied for constructingA0-invariant geodesics onM .
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Remark 3.11. We denote by FixM A0 the fixed points of the isometryA0 on M.

We observe thatG 0
fA0

is homeomorphic to FixM A0. Indeed, let

(γ, ξ) ∈ G 0
fA0

= {
(γ, ξ) ∈ epi( fA0) : ξ ≤ 0

}
,

thereforefA0(γ ) ≤ ξ ≤ 0. From this, we get thatγ ∈ XA0 and|γ ′(s)| = 0 almost
everywhere, thereforeγ (s) = x0 ∈ M. Since A0(γ (0)) = γ (1) it follows that
x0 ∈ FixM A0.

4. Topological framework and Lipschitz obstacle

Let A0 be a linear isometry of finite order (i.e., there existsk ∈ N such that
Ak

0 = idR
n) and letG = 〈A0〉 be the group generated byA0. Let g : R

n → R be a
G-invariant Lipschitz function, i.e.,g(Ax) = g(x), ∀x ∈ R

n, A ∈ G. Let

M = {x ∈ R
n : g(x) ≤ 0}.

Of course,M is G-invariant, i.e.,AM = M , for everyA ∈ G. We suppose that

∀x ∈ R
n : g(x) = 0 ⇒ 0 /∈ ∂g(x),

where∂g is the Clarke’s subdifferential, [3]. According to the paper of Krawcewicz
and Marzantowicz ([12]),∂g is G-equivariant, i.e.,∂g(Ax) = A∂g(x) for every
A ∈ G. Moreover, the lower semi-continuous functionλ(x) = {|α| : α ∈ ∂g(x)}
is alsoG-invariant. Using the paper of Chang ([2]), there exists a locally Lipschitz
map

v : { x ∈ R
n |0 /∈ ∂g(x) } → R

n,

such that

(9) 0 /∈ ∂g(x) ⇒
∥∥v(x)

∥∥ ≤ 2λ(x);

(10) 0 /∈ ∂g(x), α ∈ ∂g(x) ⇒ 〈
α, v(x)

〉 ≥ λ(x)2.

Moreover, in our case, the above map can be chosen inG-equivariant way. More
precisely, let

v̂(x) = 1

k

∑
A∈G

A−1v(Ax).

Of course,̂v(Ax) = Âv(x), ∀A ∈ G, x ∈ R
n, i.e., v̂ is G-equivariant and relations

(9) and (10) hold for̂v (instead ofv). We can choose aG-invariant neighborhoodO
of {x ∈ R

n : 0 ∈ ∂g(x)} and aG-invariant locally Lipschitz functionalθ : R
n →

[0, 1] such that

x ∈ O ⇒ θ(x) = 0,

g(x) = 0 ⇒ θ(x) = 1.
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We define

w(x) =

θ(x)
v̂(x)

|̂v(x)| , if 0 /∈ ∂g(x)

0, if x ∈ O
w is well defined, locally Lipschitz andG-equivariant, i.e.,w(Ax) = Aw(x), for
everyx ∈ R

n andA ∈ G.

Moreover, we have

g(x) = 0 ⇒ |w(x)| = 1,

g(x) = 0, α ∈ ∂g(x) ⇒ 〈α, w(x)〉 ≥ 1
2 λ(x).

Definition 4.1. A subsetL of R
n is Lipschitz neighborhood retractif there exist

an open neighborhoodUL of L in R
n and a locally Lipschitz retractionr : UL → L .

Theorem 4.2. The set M is Lipschitz neighborhood retract. Moreover, the re-
traction can be constructed such that r◦ A0 = A0 ◦ r in the neighborhood UM of
M and UM is G-invariant.

Proof. We consider the following Cauchy problem:
∂ηG

∂t
(x, t) = −w

(
ηG(x, t)

)
,

ηG(x, 0) = x.

Of course,ηG(·, t) is G-homeomorphism, i.e., homeomorphism andηG(Ax,t) =
AηG(x,t), ∀A ∈ G, x ∈ R

n, t ∈ R. ThereforeUM = {ηG(x,−1) : g(x) < 0} is
open and isG-invariant. Further, the proof is proceeded in the same way as in ([7,
Theorem 6.4]), if we replaceη by ηG, obtaining a retractionr from UM onto M
which commutes withA0. �

Let Y be a subset ofRn which isG-invariant. We consider the

�G(A0)(Y) =
{
γ ∈ C

(
[0, 1]; Y

)
: A0

(
γ (0)

) = γ (1)
}

which is endowed with the sup-metric. IfA0 = id, then�G(A0)(Y) = �(Y) is the
well-known free loop space ofY.

Let UM be the open neighborhood ofM (from Theorem 4.2) and let

�1
G(A0)

(UM) :=
{
γ ∈ W1,2(0, 1;UM) : A0

(
γ (0)

) = γ (1)
}

be endowed with theW1,2-metric. Then there exists a continuous mapping

KA0 : �G(A0)(UM) × [0,1] → �G(A0)(UM),

which satisfies the assertions from [7, Lemma 5.2] replacing�(U ) by �G A0(UM)

and�1(U ) by �1
G A0

(UM).

The next result is the equivariant form of [7, Theorem 5.3].
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Theorem 4.3. The mapπ : epi( fA0) → �G(A0)(M) defined byπ(γ, λ) = γ is
a homotopy equivalence.

Proof. Let r : UM → M be as in Theorem 4.2 andKA0 : �G(A0)(UM)×[0, 1] →
�G(A0)(UM) as above. Letγ ∈ �G(A0)(M). Thenγr = r ◦ KA0(γ, 1) is also in
�G(A0)(M) sinceγr is continuous and

A0

(
γr (0)

) = γr (1).

Further, the proof is similar to that of [7, Theorem 5.3].�

Theorem 4.4. For every(γ, λ) ∈ epi( fA0) with λ > fA0(γ ) we have

|dG fA0
|(γ, λ) = 1.

Proof. We can follow the proof of the [7, Theorem 6.4] with the corresponding
modification, i.e., instead off, X, ν we usefA0, XA0, w respectively. �

5. The existence ofA0-invariant geodesics

Now, we are in the position to prove the main result of this paper:

Proof of Theorem 1.1.The set epi( fA0) endowed with the metricL2×R is com-
plete. Moreover, sinceM is compact,(G fA0

)b is compact for anyb ∈ R, therefore
G fA0

satisfies the(PS)c condition, for anyc ∈ R. Suppose thatG fA0
has no critical

point (γ, ξ) ∈ epi( fA0) with

a = 0 < G fA0
(γ, ξ) ≤ b = +∞.

The case of(H1). From [5, Theorem 2.10], it follows thatK (G fA0
)0 is a weak

deformation retract of epi( fA0). SinceK (G fA0
)0 is homeomorphic to FixM A0 and

epi( fA0) is homotopically equivalent withG fA0
, this is in contradiction with the

assumption.
The case of(H2). From [7, Theorem 2.7], it follows that the inclusion

i : (G fA0
)0 ↪→ epi( fA0)

induces an isomorphism between the Alexander–Spanier cohomology groups of
the above sets, which is a contradiction with the assumption.

Therefore, in the both cases, there exists(γ,λ) ∈ epi( fA0) with λ > 0 and
|dG fA0

|(γ, λ) = 0. From Theorem 4.4 it follows thatλ = fA0(γ ). Therefore,γ ∈
XA0 and |d fA0|(γ ) = 0. So,γ is a critical point for fA0 with 0 < fA0 < +∞.

Applying the machinery described in Remark 3.10, we obtain that the curveγ̃γ :
R → M defined by

γ̃γ (t) = A[t ]
0

(
γ ({t}))

is a non-trivialA0-invariant geodesic onM . The proof is complete. �



Isometry-invariant geodesics 213

Remark 5.1. In fact, sinceA0 is of finite order, the aboveA0-invariant geodesic
on M is a closed geodesic onM . Therefore, if we want to guarantee the existence
of a closed geodesic onM (in this way), it is enough to establish the existence of
an A0-invariant geodesic.

Finally, we give some examples.

Example 5.2. If A0 = idR
n, then we obtain the notion of the closed geodesics,

introduced in [7]. Of course, FixM A0 = M and�G(A0)(M) = �(M) is the free
loop space. Moreover, ifM is defined as above and we suppose that it is compact,
simply connected and non-contractible in itself, then, according to a result of Vigué-
Poirrier and Sullivan [14], the hypothesis(H2) holds. Therefore, there exists a non-
trivial closed geodesics onM.

Example 5.3. If Fix M A0 = ∅, then both hypotheses hold, therefore there exists
at least oneA0-invariant geodesic.

Remark 5.4. The existence of the closed geodesics, in the sense of [7], is a
difficult problem. If the setM is “symmetric” enough and if we can construct a
linear isometry, which leavesM invariant, the existence of a closed geodesic is
simpler, as shown in the next example.

Example 5.5. Let

M =
{

x ∈ R
3 :

3∑
i =1

x2
i ≤ 1 ≤

3∑
i =1

|xi |
}
.

Let A0(x1, x2, x3) = (x1, −x2, −x3). The fixed points ofA0 are

FixM A0 = {(1,0,0), (−1,0,0)}.
Of course,A2

0 = id and �G(A0)M is 0-connected, therefore the two sets above
are not homotopically equivalent, i.e., the hypothesis(H1) holds. Therefore, there
exists anA0-invariant geodesic onM which is at same time a closed geodesic.
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