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A K-theory for certain multisymplectic vector
bundles!

Ekkehart Winterroth

Abstract. A new topological K-theory is introduced. It is defined in terms of
vector bundles equipped with a certain multisymplectic structure. Because of
its connection with Hamiltonian field theories and some specific frameworks
in topology and differential geometry, this K-theory promises to have several
quite interesting applications. Here, however, only some rather basic properties
will be developed.
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1. Introduction

The aim of this note is to introduce a new topological K-theory. It arose out of
the study of vector bundles carrying a certain multisymplectic structure. The first
important feature of this structure, which is locally the exterior product of a one
form and a symplectic form on the kernel of this one form, is that it is in the under-
lying geometric structure for Hamiltonian field theories, [3]. Hence, the K-theory is
a useful tool for studying global properties of Hamiltonian field theories. Yet, it has
a substantially wider scope. This depends on the fact that this K-theory is actually
a family of K-theories parametrised by the elements of the first cohomology group
with coefficients inZ,. Hence, it suits well to deal with questions arising in the
studies of families of bundles which are likewise parametrised. Such families arise,
most notably, in the de Rham theory of forms valued in an arbitrary line bundle and
as the families of Spin structures associated to a vector bundle. However, we will
develop only the basic properties of the theory here.

1The paper is in final form and will not be published elsewhere.
Supported by GNFM of INdAM, University of Torino and University of Erlangeriwhberg.
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2. The special multisymplectic structure

LetV be areal vector space of odd dimension #héd subspaces of codimension
one, i.e., there exists € V such thatv = R - u @ W holds. SinceWV is even-
dimensional, it can be equipped with a symplectic structurewBye denote the
corresponding non-degenerate, alternating 2-formi\briFurthermore, defing to
be a 1-form withW = kerg. Then

Q=FAw
is an alternating 3-form oN'.

Definition 2.1. A multisymplectic vector space is a vector space equipped with
an alternatingk-form 2, k > 3, which is non-degenerate in the following sense:
the (k — 1)-form ¢, 2 vanishes for none € V.

Remark 2.2. Fork = 2 the above definition is just the one of symplectic vector
spaces.

Proposition 2.3. (V, ) is a multisymplectic vector space.

Proof. It has to be shown thatQ2 # 0 holds for allv € V. SinceV = R-ueW,
for everyv € V we havev =t - u 4+ w with w € W uniquely determined. Thus we
get

W =ttt = iR+ 1, R =1 (Wh) Ao — B A (o).

But thisk-form is obviously not the zero-form. O

Definition 2.4. By G(2) we denote the group of linear automorphismsvof
leaving$2 invariant, i.e., a linear automorphisfris contained irG(2), if and only
if

Q(p(v1). ¢(v2), p(v3)) = Q((v), (v2). (v3))
holds.

Proposition 2.5. W is invariant under the action of (2).

Proof. First, we recall, that for a forrd and an one forne we haved = o A 6,
if and only if @ A 6 = 0. By definition of<2 it is thus clear, that for a one form
with @« A @ = 0, we must havee = t - 8. Now let¢ be an automorphism a@.
Then we get

0=aAQ(p), ..., o))
=Y (D (¢(21)) (¢ W2 @), - - - $Wrk12))

=Y (D" (¢pr1)) (W @): - -, Wrks2))-

Thus we havéx o) A2 = 0. But, as stated above, this means that forageyt - 8
the 1-forma o ¢ must again be of the type- 8. For anyw € W we get thus
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a(p(w)) =r-B(w) = 0, sinceW = kerg by definition. If we had nowp(w) ¢ W
for somew € W, we would getx(¢(w)) # 0, what gives a contradiction. Hence
W has to be invariant under the action®¢{2). [

We are interested in the gro@p(2) since the condition for a vector bundle to
be equipped with a multisymplectic structure of tyQei.e., each fibre is a mul-
tisymplectic vector space and the forms vary continuously with the fibres, is that
the transition functions can be chosen to take valu€s(if?). However, it is well
known that a vector bundle always can be equipped with a fibre metric, hence for
guestions concerning the topology of vector bundles it is sufficient to know the
group _

G(Q) = G(Q) N 02m+1-

Thus, we have to find a description of the gr(ﬁipﬂ). For this we assum¥ to be
equipped with a euclidean metric such that the decompositiea R - u @ W is

orthogonal. Since every automorphism leawégwariant, everyp € G(2) leaves,
since it preserves orthogonality, alRo u invariant and hence splits inth, & ¢w,

with ¢, (u) = +u andgw € Oxn(W). Thus, we have

QU, wi, wp) = QP W), P(w), ¢ (wy))
= Q(¢uW), pw(w), w(wy))
= £Q(u, pw(w), pw(wy)).
Hence, we get
Q(U, w, wp) = £2(u, pw(wy), pw(w)).
But sincer, 2 = w holds by the definition of2, it follows that
o(@wwr), pw(wy)) = Fo(wr, wy)

holds. Hence, ever is up to a sign a symplectic automorphism of the symplectic
vector spacéW, w). Since Sp(R) N O,m = U, We get a short exact sequence

Un — G(Q) — Zo,

which splits. We can describe the actiondn= R - u @ W in the following way;
U, acts onW leavingw invariant and acts trivial oiR - u; 1 € Z, is the identity on
V and—1 € Z, acts as multiplication witk-1 onR - u and as complex conjugation
compatible with the complex structure defined by the actiodpbn'W.

With respect to this we will denot& () by US and the restriction t&W we
will call Uan, the “twisted Unitary Group”. Of coursdaln? can be considered to be
a special representation off .

Remark 2.6. It is easy to see that using any embeddindgJgfinto U, one
can embed) ] into U], , by choosing the conjugation ld ], , to be the image of
the conjugation irUg. However,Ug X UqT is not contained ithrqu, because in the

direct product the conjugation in one factor acts trivial on the other one. That this
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is not possible is seen most easily considering the symplectic structike fsom

the above reasoning it is clear that an elememg)jq either leaves the symplectic
form invariant or changes its sign, the direct produgt X UqT however contains
elements, especially the images of the conjugations, which change the sign only a
subspace.

3. The topological K-theory of 2-vector bundles

From the above discussion we can draw several conclusions on the particular
structure of vector bundles carrying a fofx As already remarked, it is clear that
their structure group can be reducedth by choosing a Riemannian metric on the
bundle. Also, it is clear by the invariance f under the action of automorphisms
that for a(2m + 1)-dimensionak2-bundleV we have a th-dimensional subbundle
W and a short exact sequence of vector bunilles> V — 0, whered is a line
bundle. A quite remarkable consequence of the previous section is that néither
needs to carry a symplectic structure, nor needs to exist a globally non-vanishing
one form ong. This is, of course, due to the fact tHaf? preserves each of them
only up to a sign.

Obviously, the direct sum of tw@-bundles cannot be again @3bundle, simply
because it has the wrong dimension, even instead of odd, and the wrong internal
structure, two line subbundles instead of one. Even more, in view of the remark
at the end of the previous section it is clear that the direct sum of two arbitrary
U] -bundles, i.e., vector bundles with structure group the twisted unitary group of
some dimension, is in general notd -bundle. On the other hand, in the case of a
multisymplectic vector spad®/, Q) is it very well possible to exten@/ using the
direct sum symplectic vector spaces. The following proposition shows now how
this quite paradoxical situations is resolved.

Proposition 3.1. Let V; and ), be twoQ-bundles over a space X, such that
Vi =0 @ W, for a fixed line bundl®. Then

VJ_GBQ Vo= Wi W,
is again an2-bundle

Proof. Let now denotep the direct sum of matrices. Every matrixiily, is either
of the type 1 A or —1@ AK, whereA € Uy, andK is complex conjugation. Thus,
for Ae UpandB € Uy we get

16 A®BeU,,,

and
~1® AKp ® BKg = —1® (A® B)Kpiq € Uy,

Now we will apply this to the transition functions of the bundl¢sWe can choose
a coveringU, and a set of local trivialisations over this covering such that for the
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transition functlonspw, ¢Wi andqﬁﬁu of V;, W andé the following holds:
) ¢V e USz o € UT and¢!, € {—1,1}

V/L

”) ¢v/1, - @ d)

Thus, forqs" = 1 we havep))} = Al with A}l € Uy, ; and forg), = —1 we
haveg)¥ = AWI K with AV € Uy,. Slnce we can choose the transition functions

0
of V1 699 V, to be

V1ieVy, _ 46
¢uﬁ@ 2 _¢\)M ®¢ ¢Vﬂ ’

it is clear by the above considerations about matrices that we can assume them to

Q
take valuesing, . O

Clearly, &’ is commutative, associative and has a neutral element, namely
hence it is a semigroup, which we c8&} (X). Thus, there exists the corresponding
Grothendieck groufK €24 (X).

However, only with the above definition of the sum operation at hand it is hardly
possible to derive any further information. To come to a better understanding of
K Q4 (X), we have to choose an alternative approach.

It is a well known fact (see, for example, [4, 5]) that every principal bundle with
structure groufis over a finite CW-complex can be constructed as the pull-back of
a universal principaG-bundle. A principalG-bundle is universal if its total space
is contractible, i.e., it is a principal bundle with fib@ total spaceE G and base
BG such thate G is a contractible fre€&-Space andBG ~ EG/G.

Remark 3.2. BG s called a classifying space for princigatbundles. Isomor-
phism classes of principd@b-bundles over a finite CW-compleX are in one to
one correspondence with homotopy classes of maps BG. It is important to
notice thatBG and all constructions related to it are unique only up to homotopy
equivalence.

Since every fre€&-space is also a fred-space for any closed subgrotipe G,
we see that the quotieEG/H a classifying space for princip&l -bundles. Hence,
B H is a bundle oveB G with fibre G/H. Applying this to the exact sequence

Um — Ul — Z,

we see thaBUy, is a double cover oBU,". Now, for any principalU,-bundle
over X we have a classifying map : X — BU,| and the following commutative
diagram:

X9 —— BUp

f
X —— BU.

i.e., (Xg, p, X) is the pull-back of theZ,-bundle(BU,, r, BU,E) via the classify-
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ing mapf. The map in the upper row is obtained from the identification of the fibre
over x with the fibre overf (x). Thus, every classifying map : X — BU/ can

be lifted to aZ,-equivariant mapf? : X, — BU,, and every sucl,-equivariant
map projects onto a classifying map of a principg]-bundle overX. However,

it should be noticed that the lifting is not unique. This depends on the fact that
the Z,-action defines a free involution ddUy,. Calling this involutionz, one sees
immediately that iff ¢ is a lifting of f, alsor o f? is a lifting.

The connection with the K-theory constructed above is ¥patan be identified
with the “sphere” bundle of the line bundéeor, equivalently, with the principal
Z»>-bundle associated th

To see this, one has to take into account that every printigabundle overX
has, via the one dimensional representatiod hf a canonical associated line bun-
dle. For the principal,] -bundle associated to @-bundle this is, of course, the
one dimensional subbundfe(this depends on the fact thidf? can be considered
the direct sum of the standard representation and the one dimensional one). The
principal Z,-bundle associated to this line bundle is thus the image of the principal
U -bundle associated % by the bundle map induced by the one dimensional rep-
resentation. For the univerda[l -bundle oveiBU,! this Z,-bundle is obviously just
(BUm, , BUT). Hence( Xy, p, X) is theZ,-bundle corresponding to the principal
U, -bundle obtained from the classifying mdp

Using the above diagram one can give now, on the level of principal bundles, a
new interpretation to the addition &-bundles introduced in Propositionl3

Given two mapsf; : X — BU,, and f, : X — BU_, which define the same
double coveringX, of X, we can define the direct product

for any two of their liftings. Now, iff/ x f/ is equivariant with respect to the usual
Zz-action onBUy,.n, then it projects onto a map
f1 x? f2: X — BU,,

m+n-

f, x? f, is obviously independent of the chosen liftings. To show that the map
f x fJ is equivariant the map it is necessary to show Bidf, x BUy, — BUm.n
can be assumed to be equivariant.

For this reason we examine the free involutiomentioned above more closely.
This involution onBUy, can be described in the following way. Using the usual em-
beddingUy,, — Ozm, we see thaBUp, is a bundle oveB O, with fibre Ogm/Un,.
This fibre can be considered the space of complex structures on a given real vector
space, i.e., the space 0f,-conjugacy classes of operatarsvith J> = —1. It has
a obvious fixed point free involution, namely the map which assigns to each com-
plex structure] its “complex conjugate™ J. Obviously, this involution extents to
BUp,. That the ma@BU,, x BU, — BUq,, can be considered to be equivariant
with respect tdZ,-action induced by the involution is clear. To see that this invo-
lution coincides in fact witlr one only has to recall from the previous section that
U, is generated by the unitary group and complex conjugation.

Hence, we have established an notion of product of printijabundle corre-
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sponding to the sum dR-bundles defined above. Infact we have achieved some-
thing more. Recall that M.F. Atiyah introduces in [2] the following notion of Real
bundle over a Real space (other than Atiyah, we use the capital letter to rule out the
obvious misunderstandings).

A Real space is any space with an involutiomnd a Real bundle over a Real
spaceY is a complex vector bundle ov&rfor which

i) the total spacé is also a Real space and the bundle projectiamommutes
with the involutions; i.e.r o tg = vy o 7,

ii) the mapEy — E., () is complex antilinear.

Now, X, is obviously a Real space. Furthermore, since there is a canonical com-
plex vector bundle associated to any princigatbundle using the standard repre-
sentation of the unitary group, itis clear that every liftingfof X — BU,] defines
a Real bundle oveXy. On the other hand it is obvious that a complex vector bundle
over Xy can be equipped with a Real structure if and only if it admits a equivariant
classifying map.

Hence, to state the relation with AtiyallsR-theory (defined in [2]) it remains to
understand “how many different liftings there are”. Above we already mentioned
that if f¢ is a lifting of f, 7 o f? is one, too. Hence, there are at least two. If

f ~ f; x? fy, then this observation holds, of course, for each factor, i.e., we have
already four. With this in mind our main result is immediately evident.

_ Theorem 3.3. Let[E] denote the K R-class of the real bundle E and denote by
E its conjugate bundle. Then we have

KQy(X) ~ KR(Xg)/Z
as abelian groups, whetgis the subgroup generated p§] — [E].

Remark 3.4. Itis quite interesting to examine casefdbeing the trivial bundle,
which we denote by. Then)V, itself can be equipped with a complex structure.
Nevertheless, the above considerations still hold, siaderm on ), cannot dis-
tinguish a complex structure from its conjugate)of. In this caseX. is just the
trivial double covering ofX Atiyah showed (in [2]) thaK R(X,) is just ordinary
complex K-theoryK (X) and thus we gek 2. (X) = K(X)/Z, Z defined as above.

Corollary 3.5. For everyQ,-bundleV of finite type, there exists @4-bundle
V°, such that

VO V=0 (e ®O)".

Proof. We pull the subbundl®V back to X,. The pull-back/V® has a Real
trivialisation for all possible complex structures,the quotient by the involution of
the trivialisation gives u3V° and the quotient by the involution of a trivial Real
bundle overXy is clearly of type(e © 6)". [

Remark 3.6. Hence, itis possible to prove results analogous to the one stated at
the beginning of the second chapter in ([1]). With the only difference thEtix -
theory instead of trivial bundles, one has bundles of tg® 6)". Thus one gets
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“every class inK 4 (X) can be written a¥ — (¢ ® )" and “two bundlesVy, V»
belong to the same class 2, (X) iff there exists a bundlée & 0)", such that
ViBEeDdNH"=V® (e ).

Since the line bundles ovet are in one to one correspondence with the ele-
ments of first cohomology group with,-coefficients, we can state the following
definition of the topologicaK -theory of Q2-vector bundles.

Definition 3.7.
KQ(X) = EB K €24 (X).

0eHL(X,Z5)

It is clear, thatk @ is a functor. Since every continuous mép: X — Y in-
duces a cohomological homomorphisit : H(Y, Z,) — H(X, Z,) we get a
commutative diagram

Xtrgy — Yy

px py
f

X —— Y.

So, the functoriality oK 2 follows from the functoriality ofK R.

Remark 3.8. The motivation of the above definition is that there exists a finite
dimensional projective spadPy, such that the line bundles ov&rare in one to
one correspondence with the homotopy classes of ¥aps RPx. Because of
this there exists a strong connection betw&eR(X) and K Q,(X x RPy); here
0 denotes the pull-back of the canonical line bundle ak& via the projection
p: X x RP« — RP«. However, we will not develop this any further in the present
paper.
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