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A K-theory for certain multisymplectic vector
bundles1

Ekkehart Winterroth

Abstract. A new topological K-theory is introduced. It is defined in terms of
vector bundles equipped with a certain multisymplectic structure. Because of
its connection with Hamiltonian field theories and some specific frameworks
in topology and differential geometry, this K-theory promises to have several
quite interesting applications. Here, however, only some rather basic properties
will be developed.
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1. Introduction

The aim of this note is to introduce a new topological K-theory. It arose out of
the study of vector bundles carrying a certain multisymplectic structure. The first
important feature of this structure, which is locally the exterior product of a one
form and a symplectic form on the kernel of this one form, is that it is in the under-
lying geometric structure for Hamiltonian field theories, [3]. Hence, the K-theory is
a useful tool for studying global properties of Hamiltonian field theories. Yet, it has
a substantially wider scope. This depends on the fact that this K-theory is actually
a family of K-theories parametrised by the elements of the first cohomology group
with coefficients inZ2. Hence, it suits well to deal with questions arising in the
studies of families of bundles which are likewise parametrised. Such families arise,
most notably, in the de Rham theory of forms valued in an arbitrary line bundle and
as the families of Spin structures associated to a vector bundle. However, we will
develop only the basic properties of the theory here.

1The paper is in final form and will not be published elsewhere.
Supported by GNFM of INdAM, University of Torino and University of Erlangen–Nürnberg.
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2. The special multisymplectic structure

Let V be a real vector space of odd dimension andW a subspaces of codimension
one, i.e., there existsu ∈ V such thatV = R · u ⊕ W holds. SinceW is even-
dimensional, it can be equipped with a symplectic structure. Byω we denote the
corresponding non-degenerate, alternating 2-form onW. Furthermore, defineβ to
be a 1-form withW = kerβ. Then

� := β ∧ ω

is an alternating 3-form onV .

Definition 2.1. A multisymplectic vector space is a vector space equipped with
an alternatingk-form �, k ≥ 3, which is non-degenerate in the following sense:
the(k − 1)-form ιv� vanishes for nonev ∈ V .

Remark 2.2. Fork = 2 the above definition is just the one of symplectic vector
spaces.

Proposition 2.3. (V, �) is a multisymplectic vector space.

Proof. It has to be shown thatιv� 	= 0 holds for allv ∈ V . SinceV = R ·u⊕W,
for everyv ∈ V we havev = t · u + w with w ∈ W uniquely determined. Thus we
get

ιv� = ιt ·u+w� = ιt ·u� + ιw� = t · (ιuβ) ∧ ω − β ∧ (ιwω).

But thisk-form is obviously not the zero-form. �

Definition 2.4. By G(�) we denote the group of linear automorphisms ofV
leaving� invariant, i.e., a linear automorphismφ is contained inG(�), if and only
if

�
(
φ(v1), φ(v2), φ(v3)

) = �
(
(v1), (v2), (v3)

)

holds.

Proposition 2.5. W is invariant under the action of G(�).

Proof. First, we recall, that for a formθ and an one formα we haveθ = α ∧ θ̃θ ,
if and only if α ∧ θ = 0. By definition of� it is thus clear, that for a one formα
with α ∧ � = 0, we must haveα = t · β. Now let φ be an automorphism of�.
Then we get

0 = α ∧ �
(
φ(v1), . . . , φ(v4)

)

=
∑

π

(−1)πα
(
φ(vπ(1))

)
�

(
φ(vπ(2)), . . . , φ(vπ(k+2))

)

=
∑

π

(−1)πα
(
φ(vπ(1))

)
�

(
(vπ(2)), . . . , (vπ(k+2))

)
.

Thus we have(α◦φ)∧� = 0. But, as stated above, this means that for anyα = t ·β
the 1-formα ◦ φ must again be of the typer · β. For anyw ∈ W we get thus
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α(φ(w)) = r ·β(w) = 0, sinceW = kerβ by definition. If we had nowφ(w) /∈ W
for somew ∈ W, we would getα(φ(w)) 	= 0, what gives a contradiction. Hence
W has to be invariant under the action ofG(�). �

We are interested in the groupG(�) since the condition for a vector bundle to
be equipped with a multisymplectic structure of type�, i.e., each fibre is a mul-
tisymplectic vector space and the forms vary continuously with the fibres, is that
the transition functions can be chosen to take values inG(�). However, it is well
known that a vector bundle always can be equipped with a fibre metric, hence for
questions concerning the topology of vector bundles it is sufficient to know the
group

G̃G(�) := G(�) ∩ O2m+1.

Thus, we have to find a description of the groupG̃G(�). For this we assumeV to be
equipped with a euclidean metric such that the decompositionV = R · u ⊕ W is
orthogonal. Since every automorphism leavesW invariant, everyφ̃φ ∈ G̃G(�) leaves,
since it preserves orthogonality, alsoR · u invariant and hence splits intõφφ u ⊕ φ̃φ W,
with φ̃φ u(u) = ±u andφ̃φ W ∈ O2m(W). Thus, we have

�(u, w1, w2) = �
(
φ̃φ(u), φ̃φ(w1), φ̃φ(w2)

)

= �
(
φ̃φ u(u), φ̃φ W(w1), φ̃φ W(w2)

)

= ±�
(
u, φ̃φ W(w1), φ̃φ W(w2)

)
.

Hence, we get

�(u, w1, w2) = ±�
(
u, φ̃φ W(w1), φ̃φ W(w2)

)
.

But sinceιu� = ω holds by the definition of�, it follows that

ω
(
φ̃φ W(w1), φ̃φ W(w2)

) = ∓ω(w1, w2)

holds. Hence, everỹφφ W is up to a sign a symplectic automorphism of the symplectic
vector space(W, ω). Since Spm(R) ∩ O2m = Um, we get a short exact sequence

Um → G̃G(�) → Z2,

which splits. We can describe the action onV = R · u ⊕ W in the following way;
Um acts onW leavingω invariant and acts trivial onR · u; 1 ∈ Z2 is the identity on
V and−1 ∈ Z2 acts as multiplication with−1 onR ·u and as complex conjugation
compatible with the complex structure defined by the action ofUm on W.

With respect to this we will denotẽGG(�) by U�
m and the restriction toW we

will call U T
m , the “twisted Unitary Group”. Of course,U�

m can be considered to be
a special representation ofU T

m .

Remark 2.6. It is easy to see that using any embedding ofUp into Up+q one
can embedU T

p into U T
p+q by choosing the conjugation inU T

p+q to be the image of
the conjugation inU T

p . However,U T
p ×U T

q is not contained inU T
p+q, because in the

direct product the conjugation in one factor acts trivial on the other one. That this
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is not possible is seen most easily considering the symplectic structure onW: from
the above reasoning it is clear that an element ofU T

p+q either leaves the symplectic
form invariant or changes its sign, the direct productU T

p × U T
q however contains

elements, especially the images of the conjugations, which change the sign only a
subspace.

3. The topological K-theory of�-vector bundles

From the above discussion we can draw several conclusions on the particular
structure of vector bundles carrying a form�. As already remarked, it is clear that
their structure group can be reduced toU T

m by choosing a Riemannian metric on the
bundle. Also, it is clear by the invariance ofW under the action of automorphisms
that for a(2m+ 1)-dimensional�-bundleV we have a 2m-dimensional subbundle
W and a short exact sequence of vector bundlesW → V → θ , whereθ is a line
bundle. A quite remarkable consequence of the previous section is that neitherW
needs to carry a symplectic structure, nor needs to exist a globally non-vanishing
one form onθ . This is, of course, due to the fact thatU�

m preserves each of them
only up to a sign.

Obviously, the direct sum of two�-bundles cannot be again an�-bundle, simply
because it has the wrong dimension, even instead of odd, and the wrong internal
structure, two line subbundles instead of one. Even more, in view of the remark
at the end of the previous section it is clear that the direct sum of two arbitrary
U T

∗ -bundles, i.e., vector bundles with structure group the twisted unitary group of
some dimension, is in general not aU T

∗ -bundle. On the other hand, in the case of a
multisymplectic vector space(V, �) is it very well possible to extendW using the
direct sum symplectic vector spaces. The following proposition shows now how
this quite paradoxical situations is resolved.

Proposition 3.1. Let V1 andV2 be two�-bundles over a space X, such that
Vi = θ ⊕ Wi for a fixed line bundleθ . Then

V1 ⊕θ V2 := θ ⊕ W1 ⊕ W2

is again an�-bundle

Proof. Let now denote⊕ the direct sum of matrices. Every matrix inU
�

m is either
of the type 1⊕ A or −1⊕ AK, whereA ∈ Um andK is complex conjugation. Thus,
for A ∈ Up andB ∈ Uq we get

1 ⊕ A ⊕ B ∈ U
�

p+q

and
−1 ⊕ AKp ⊕ BKq = −1 ⊕ (A ⊕ B)K p+q ∈ U

�

p+q.

Now we will apply this to the transition functions of the bundlesVi . We can choose
a coveringUν and a set of local trivialisations over this covering such that for the
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transition functionsφVi
νµ, φWi

νµ andφθ
νµ of Vi , Wi andθ the following holds:

i) φVi
νµ ∈ U�

pi
, φWi

νµ ∈ U T
pi

andφθ
νµ ∈ {−1, 1}

ii) φVi
νµ = φθ

νµ ⊕ φWi
νµ

Thus, forφθ
νµ = 1 we haveφWi

νµ = AWi
νµ with AWi

νµ ∈ Upi ; and forφθ
νµ = −1 we

haveφWi
νµ = AWi

νµ K with AWi
νµ ∈ Upi . Since we can choose the transition functions

of V1 ⊕θ V2 to be

φV1⊕θV2
νµ = φθ

νµ ⊕ φW1
νµ ⊕ φW2

νµ ,

it is clear by the above considerations about matrices that we can assume them to
take values inU�

p1+p2
. �

Clearly, ⊕θ is commutative, associative and has a neutral element, namelyθ ,
hence it is a semigroup, which we call�θ(X). Thus, there exists the corresponding
Grothendieck groupK�θ(X).

However, only with the above definition of the sum operation at hand it is hardly
possible to derive any further information. To come to a better understanding of
K�θ(X), we have to choose an alternative approach.

It is a well known fact (see, for example, [4,5]) that every principal bundle with
structure groupG over a finite CW-complex can be constructed as the pull-back of
a universal principalG-bundle. A principalG-bundle is universal if its total space
is contractible, i.e., it is a principal bundle with fibreG, total spaceEG and base
BG such thatEG is a contractible freeG-Space andBG � EG/G.

Remark 3.2. BG is called a classifying space for principalG-bundles. Isomor-
phism classes of principalG-bundles over a finite CW-complexX are in one to
one correspondence with homotopy classes of mapsX → BG. It is important to
notice thatBG and all constructions related to it are unique only up to homotopy
equivalence.

Since every freeG-space is also a freeH -space for any closed subgroupH ∈ G,
we see that the quotientEG/H a classifying space for principalH -bundles. Hence,
B H is a bundle overBG with fibre G/H . Applying this to the exact sequence

Um → U T
m → Z2,

we see thatBUm is a double cover ofBUT
m . Now, for any principalU T

m-bundle
over X we have a classifying mapf : X → BUT

m and the following commutative
diagram:

Xθ BUm

X BUT
m

f θ

p

f

π

i.e., (Xθ , p, X) is the pull-back of theZ2-bundle(BUm, π, BUT
m) via the classify-
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ing map f . The map in the upper row is obtained from the identification of the fibre
over x with the fibre overf (x). Thus, every classifying mapf : X → BUT

m can
be lifted to aZ2-equivariant mapf θ : Xθ → BUm and every suchZ2-equivariant
map projects onto a classifying map of a principalU T

m-bundle overX. However,
it should be noticed that the lifting is not unique. This depends on the fact that
theZ2-action defines a free involution onBUm. Calling this involutionτ , one sees
immediately that iff θ is a lifting of f , alsoτ ◦ f θ is a lifting.

The connection with the K-theory constructed above is thatXθ can be identified
with the “sphere” bundle of the line bundleθ or, equivalently, with the principal
Z2-bundle associated toθ .

To see this, one has to take into account that every principalU T
m-bundle overX

has, via the one dimensional representation ofU T
m , a canonical associated line bun-

dle. For the principalU T
m-bundle associated to an�-bundle this is, of course, the

one dimensional subbundleθ (this depends on the fact thatU�
m can be considered

the direct sum of the standard representation and the one dimensional one). The
principalZ2-bundle associated to this line bundle is thus the image of the principal
U T

m-bundle associated toW by the bundle map induced by the one dimensional rep-
resentation. For the universalU T

m-bundle overBUT
m thisZ2-bundle is obviously just

(BUm, π, BUT
m). Hence,(Xθ , p, X) is theZ2-bundle corresponding to the principal

U T
m-bundle obtained from the classifying mapf .
Using the above diagram one can give now, on the level of principal bundles, a

new interpretation to the addition of�-bundles introduced in Proposition 3.1.
Given two mapsf1 : X → BUT

m and f2 : X → BUT
n , which define the same

double coveringXθ of X, we can define the direct product

f θ
1 × f θ

2 : Xθ → BUm × BUn → BUm+n

for any two of their liftings. Now, if f θ
1 × f θ

2 is equivariant with respect to the usual
Z2-action onBUm+n, then it projects onto a map

f1 ×θ f2 : X → BUT
m+n.

f1 ×θ f2 is obviously independent of the chosen liftings. To show that the map
f θ
1 × f θ

2 is equivariant the map it is necessary to show thatBUm × BUn → BUm+n

can be assumed to be equivariant.
For this reason we examine the free involutionτ mentioned above more closely.

This involution onBUm can be described in the following way. Using the usual em-
beddingUm → O2m, we see thatBUm is a bundle overBO2m with fibre O2m/Um.
This fibre can be considered the space of complex structures on a given real vector
space, i.e., the space ofUm-conjugacy classes of operatorsJ with J2 = −1. It has
a obvious fixed point free involution, namely the map which assigns to each com-
plex structureJ its “complex conjugate”−J. Obviously, this involution extents to
BUm. That the mapBUm × BUn → BUm+n can be considered to be equivariant
with respect toZ2-action induced by the involution is clear. To see that this invo-
lution coincides in fact withτ one only has to recall from the previous section that
U T

m is generated by the unitary group and complex conjugation.
Hence, we have established an notion of product of principalU T

m-bundle corre-
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sponding to the sum of�-bundles defined above. Infact we have achieved some-
thing more. Recall that M.F. Atiyah introduces in [2] the following notion of Real
bundle over a Real space (other than Atiyah, we use the capital letter to rule out the
obvious misunderstandings).

A Real space is any space with an involutionτ and a Real bundle over a Real
spaceY is a complex vector bundle overY for which

i) the total spaceE is also a Real space and the bundle projectionπ commutes
with the involutions; i.e.,π ◦ τE = τY ◦ π,

ii) the mapEy �−→ EτY(y) is complex antilinear.
Now, Xθ is obviously a Real space. Furthermore, since there is a canonical com-

plex vector bundle associated to any principalUm-bundle using the standard repre-
sentation of the unitary group, it is clear that every lifting off : X → BUT

m defines
a Real bundle overXθ . On the other hand it is obvious that a complex vector bundle
over Xθ can be equipped with a Real structure if and only if it admits a equivariant
classifying map.
Hence, to state the relation with Atiyah’sK R-theory (defined in [2]) it remains to
understand “how many different liftings there are”. Above we already mentioned
that if f θ is a lifting of f , τ ◦ f θ is one, too. Hence, there are at least two. If
f � f1 ×θ f2, then this observation holds, of course, for each factor, i.e., we have
already four. With this in mind our main result is immediately evident.

Theorem 3.3. Let [E] denote the K R-class of the real bundle E and denote by
–
EE its conjugate bundle. Then we have

K�θ(X) � K R(Xθ )/I

as abelian groups, whereI is the subgroup generated by[E] − [
–
EE ].

Remark 3.4. It is quite interesting to examine case ofθ being the trivial bundle,
which we denote byε. ThenWε itself can be equipped with a complex structure.
Nevertheless, the above considerations still hold, since�-form onVε cannot dis-
tinguish a complex structure from its conjugate onWε . In this caseXε is just the
trivial double covering ofX Atiyah showed (in [2]) thatK R(Xε) is just ordinary
complex K-theoryK (X) and thus we getK�ε(X) = K (X)/I, I defined as above.

Corollary 3.5. For every�θ -bundleV of finite type, there exists a�θ -bundle
V◦, such that

V ⊕θ V◦ = θ ⊕ (ε ⊕ θ)n.

Proof. We pull the subbundleW back to Xθ . The pull-backWC has a Real
trivialisation for all possible complex structures,the quotient by the involution of
the trivialisation gives usW◦ and the quotient by the involution of a trivial Real
bundle overXθ is clearly of type(ε ⊕ θ)n. �

Remark 3.6. Hence, it is possible to prove results analogous to the one stated at
the beginning of the second chapter in ([1]). With the only difference that inK�θ -
theory instead of trivial bundles, one has bundles of type(ε ⊕ θ)n. Thus one gets
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“every class inK�θ(X) can be written asV − (ε ⊕ θ)n” and “two bundlesV1,V2

belong to the same class inK�θ(X) iff there exists a bundle(ε ⊕ θ)n, such that
V1 ⊕ (ε ⊕ θ)n = V2 ⊕ (ε ⊕ θ)n”.

Since the line bundles overX are in one to one correspondence with the ele-
ments of first cohomology group withZ2-coefficients, we can state the following
definition of the topologicalK -theory of�-vector bundles.

Definition 3.7.

K�(X) :=
⊕

θ∈H1(X,Z2)

K�θ(X).

It is clear, thatK� is a functor. Since every continuous mapf : X → Y in-
duces a cohomological homomorphismf ∗ : H1(Y, Z2) → H1(X, Z2) we get a
commutative diagram

X f ∗(θ) Yθ

X Y.

pX

f

pY

So, the functoriality ofK� follows from the functoriality ofK R.

Remark 3.8. The motivation of the above definition is that there exists a finite
dimensional projective spaceRPk, such that the line bundles overX are in one to
one correspondence with the homotopy classes of mapsX → RPk. Because of
this there exists a strong connection betweenK�(X) and K�θ(X × RPk); here
θ denotes the pull-back of the canonical line bundle overRPk via the projection
p : X × RPk → RPk. However, we will not develop this any further in the present
paper.
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