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Skew-symmetric frames and constant
curvature?

A.M. lonescu

Abstract. Let (M, g) be a Riemannian manifold arid a distribution in its
tangent fiber bundle. We say thatpossesses local (not necessarily orthonor-
mal) skew-symmetric frames if around every poinibthere are local sections
X1, ..., Xk € 'D, such thatvy; Xj + Vx; X; = 0, foranyi, j = 1,...,Kk,
wherek is the dimension of the distributiory, is the Levi-Civita connection
with respect tay and theX; are linearly independent at every point. It is proven
that if a smooth €C°°) surface possesses (local) skew-symmetric frames (i.e.,
in the whole tangent distribution), then it has constant curvature.

Keywords. Skew-symmetric frames, constant curvature.

MS classification. 57R25, 53B20, 58A30, 58A99, 53C22.

Special frames on Riemannian manifolds were studied by many authors, e.g.,
d’Atri and Nickerson, [1]. In that paper they considered in particular Killing frames,
i.e., frames of local Killing vector fields with constant scalar product to each other.
They proved (Theorem 3.6, Proposition 3.2) that such a manifold is locally sym-
metric and all sectional curvatures are non-negative.

We will discuss here some properties of more general skew-symmetric frames.
First we recall some basic facts about geodesics and geodesic fields in Riemannian
geometry.

Lemma 1. Let X be a non-vanishing geodesic (auto-parallel) vector field on a
Riemannian manifold. Then /X X]|| is a geodesic vector field, too.

Proposition 2. Let(M, g) be a Riemannian manifold and letpM, v € T,M.
Then there exists locally a geodesic (auto-parallel) vectorfield X on M such that
Xp = .

1This paper is in final form and no version of it will be submitted for publication elsewhere.
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Proposition 3. Let X; be a unit geodesic vectorfield on a surface S. Then there
exist local coordinategu, v) on S such that X= d/dv and gd/0v, 3/0u) = 0.

We may state the main result now.

Theorem 4. If a smooth (C°) surface (locally) admits systems of skew-symmet-
ric frames, then its curvature is constant.

Proof. The proof is rather computational. Let, v) be a local coordinate system
of the form given by Proposition 3, so the coefficients of the metricqaie=
E(U,v) >0,012=021=0,022=1.

Then the Riemann—Christofell coefficients are given by the formulae
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while the curvature is given by
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By the hypothesis, local vector field§ Y are given orSsuch thatvyY + Vy X =
VxX = VyY = 0. DenoteX = f;9/9u+ g1 9/dv andY = f,0/9u+ g, 9/dv.
Therefore the following equations hold for the skew-symmetric frang on S:
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It follows from the last equations that one can suppgpsg 0. Moreover, applying
Lemma 1 to the vectorfielX and then Proposition 3 t&; = X/|| X]||, it follows
that one can assumig = 0.

It follows that f, = A(u)/E andg; = gi1(u) # 0. Then the calculation shows
that E = h?(v) A%(u) and f, = 1/ A(u)h?(v), with functionsA, h depending om
(respectively) only.
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The following notationg, = a(u, v)g; is convenient. Compatibility conditions
for the system above reduce then to
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From the second equation we obtamy/dv = f,b’, while the sixth equation gives
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whereb = 1/g;. Therefore the symmetry of the second derivativea gives
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Let us separate the variabl@s v). It follows in particular thah”h — (h')2 = const,
therefore (by Lemma 3)”/h = const, so finally
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We have made use of the

Lemma 5. Let x # 0 be a real function in one real variable such that"xx
(X)? = const Then

X"
— = const

Proof. From the equation verified by one gets the existence »f’; by differ-
entiating one gets morex” — x’x” = 0. Then(x”/x)’ = (X"’x — x"X')/x? = 0,
thereforex”/x = const. [J

Remark 6. We remark here that a surface with constant curvature does possess
(local) skew-symmetric frames.

We recall here for convenience the construction of (local) skew-symmetric fra-
mes on the spherg?, (see [2]). First, let us take the field on R® given in Eu-
clidean coordinates b@ = zxd/9x + zyd/dy + (2% — 1) 3/9z. The straightfor-
ward calculation shows th& restricts to a tangent fiel@ to S andVgqQ = zQ,
whereV is the Levi-Civita connection on the sphere. Next= (1/y)Q is a ge-
odesic vector field on the hemisphgre- 0. In an analogous way let us consider
T = (x>—1)3/dx+xyd/dy+xzd/dzandY = (1/y)T and the condition¥x Y +
VyX = VxX =VyY =0andX, Y linearly independent are fulfilled on> 0.

We recall ([3]) the following

Definition 7. A Riemannian groups a connected Lie grou@ furnished with a
bi-invariant metricg.
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Remark 8. Every Riemannian grougG, g) possesses globally defined skew-
-symmetric frames. It follows from Theorem 4 that if dien = 2, thenG has
constant curvature.

In fact it is known

Proposition 9. Let (G, g) be a Riemannian group such théimG = 2. Then
K =0.

Proof. For a Riemannian group it holds
R(X,Y)Z = —2[[X,Y], Z].
Let E;, E, be a basis in the Lie algebtaG) of G such that either
a) [Ei, Eo] =[E2, E1] =[E1, E1] = [Ez, E2] =0,
or
b) [Ei, Ez] = —[Ez, E1] = Es, [Ey, Ea] =[E2, Eo] = 0.
In both cases it follows that
R(Ez, EDE, = — 2 [[Ez, E4], E5] = 0.
Consequenthl K (E; A Ep) =0. O

Remark 10. Now we can prove that skew-symmetric frames in tangent bundles
do exist on spaces with constant sectional curvature. On Hadamard manifolds they
can be chosen to be globally defined.
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